期刊文献+

基于三维曲面重建的CT图像肺边界缺陷修复 被引量:2

Restoration of lung boundary defects in CT images based on 3D surface reconstruction
下载PDF
导出
摘要 针对CT图像的肺实质分割中由边界粘连型肿瘤造成的肺边界缺陷修复问题,提出了一种基于三维曲面重建的修复方法.对肺实质边界曲率变化较大处的缺陷,二维图像上无法获得足够多的特征对肺实质边界进行修复.本文方法首先使用质心灰度法改进了三维区域生长算法,提取肺实质进行三维重建.再使用阈值法提取分布在缺陷周围的三维点云,对三维点云进行曲面重建即可得到完整的肺实质轮廓.实验结果表明:该方法与传统的凸包算法和滚球法相比,能够更加完整有效地修复边界粘连型肺实质边界的缺陷. To solve the problem of restoring the lung boundary defects caused by the lung boundary adhesion tumor in CT image segmentation of the lung parenchyma,a method based on three-dimensional surface reconstruction is proposed.For defects with large curvature of the lung parenchymal boundary,the two-dimensional image cannot obtain enough features to restore the lung parenchymal boundary.In this paper,firstly,the centroid-gray algorithm is used to improve the three-dimensional region growth algorithm,and the lung parenchyma is extracted for three-dimensional reconstruction.Then the threshold method is used to extract the three-dimensional point cloud distributed around the defects,a complete outline of the lung parenchyma can be obtained by the surfase reconstruction of the three-dimensional point cloud.The experimental results show that compared with the traditional convex hull algorithm and the rolling ball method,this method is more complete and effective to restore the defects of lung parenchymal boundary with adhesion tumors.
作者 张欣 徐永潇 王兵 ZHANG Xin;XU Yongxiao;WANG Bing(College of Electronic and Information Engineering, Hebei University, Baoding 071002, China;College of Mathematics and Information Science, Hebei University, Baoding 071002, China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2021年第1期87-92,共6页 Journal of Hebei University(Natural Science Edition)
基金 河北省自然科学基金资助项目(F2017201172) 河北省教育厅重点项目(ZD2018210)。
关键词 肺边界缺陷修复 区域生长 三维曲面重建 restoration of lung boundary defects region growing three-dimensional surface reconstruction
  • 相关文献

参考文献3

二级参考文献21

  • 1冯建强,刘文波,于盛林.基于灰度积分投影的人眼定位[J].计算机仿真,2005,22(4):75-76. 被引量:49
  • 2Pu J, Roos J, Yi CA, et al. Adaptive border marching algorithm: automatic lung segmentation on chest CT images [ J]. Computerized Medical Imaging and Graphics, 2008, 32(6) :452 - 462. 被引量:1
  • 3Mesanovic N, Grgic M, Huseinagic H, et al. Automatic CT image segmentation of the lungs with region growing algorithm [ C]// Branka ZC, Narcis B, Mesud H, eds. Proceedings of 18th International Conference on Systems, Signals and Image Processing-IWSSIP. Sarajevo : University of Sarajevo, 2011:395 - 400. 被引量:1
  • 4Wei Ying, Shen Ouo, Li Juanjuan. A fully automatic method for lung parenchyma segmentation and repairing [ J ]. Journal of Digital Imaging, 2013, 26(3 ):483-495. 被引量:1
  • 5Shi Zhenghao, Zhao Minghua, He Lifeng, et al. A computer aided pulmonary nodule detection system using multiple massive training SVMs [ J ]. Applied Mathematics & Information Sciences, 2013, 7(3) :1165 - 1172. 被引量:1
  • 6Mohammed GJ, Hong BR, Jarjes AA. Accurate pupil features extraction based on new projection function [J]. Computing and Informatics, 2010, 4 (29) :663 - 680. 被引量:1
  • 7Li Yujie, Lu Huimin, Zhang Lifeng, et al. An automatic image segmentation algorithm based on weighting fuzzy C-means clustering [ J]. Soft Computing in Information Communication Technology, 2012, 158( 1 ) : 27 - 32. 被引量:1
  • 8Balasubramani K, Marcus K. Artificial bee colony algorithm to improve brain MR image segmentation [ J]. International Journal on Computer Science and Engineering, 2013, 1 (5) :31 - 36. 被引量:1
  • 9Zhoua SJ, Cheng YZ, Tamura SC. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images [ J ]. Biomedical Signal Processing and Contrnl, 2014, 3 ( 13 ) :62 - 70. 被引量:1
  • 10Darmanayagam SE, Harichandran KN, Cyril SRR, et al. A novel supervised approach for segmentation of lung parenchyma from chest CT for computer-aided diagnosis [ J ]. Journal of Digital Imaging, 2013, 3(26) :496 -509. 被引量:1

共引文献31

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部