期刊文献+

基于时空域数据融合的Kinect深度图像修复算法 被引量:5

Kinect Depth Image Restoration Algorithm Based on Space-time Domain Data Fusion
下载PDF
导出
摘要 针对Kinect传感器获取的深度图像中存在大量噪声以及深度信息缺失导致的空洞问题,提出一种基于时空域数据融合的深度图像修复算法。首先,对配准后的深度图像利用卡尔曼滤波使跳变深度值趋于平稳,并采用阈值分割法得到待修复区域;其次,计算待修复边界所有像素点的时空域置信度,对时空域置信度最大的像素点计算其时域和空域深度数据,并根据时空域置信度为时空数据分配权值进行数据融合,实现像素点的修复;最后,待修复边界改变,迭代执行上一步直至图像修复完成。实验结果表明:与传统修复算法相比,基于时空域数据融合的Kinect深度图像修复算法的深度图峰值信噪比更高、均方根误差更小,图像质量更好。 Aiming at a great number of problems which caused by a large number of noises in the depth image acquired by Kinect sensor and the lack of depth information,a depth image restoration algorithm which is based on spatio-temporal data fusion is proposed.Firstly,it deals with the depth image of registration through the Kalman filter to stabilize the hop depth value,and obtain the region to be repaired by the threshold segmentation method.Secondly,the space-time domain reliability of all pixels in the boundary to be repaired is calculated.The time domain and spatial depth date of the pixel with the highest reliability is calculated,and the data fusion which is accomplished in accordance with the space-time domain reliability for the spatio-temporal data distribution weight has achieved the pixel point repair.Finally,after the boundary to be repaired to be changed,an interation method to perform the previous step until the image restoration is successful.The experimental results show that compared with the traditional repair algorithm,the depth image restoration algorithm makes a peak signal-to-noise ratio more accurate,root means square error less and image quality better.
作者 林玲 陈姚节 郭同欢 LIN Ling;CHEN Yao-jie;GUO Tong-huan(College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China;Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System,Wuhan University of Science and Technology,Wuhan 430065,China;Metallurgical Industry Process National Virtual Simulation Experimental Teaching Center,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《科学技术与工程》 北大核心 2019年第30期215-220,共6页 Science Technology and Engineering
关键词 时空域置信度 时空域数据 数据融合 深度图像修复 space-time domain reliability space-time domain data data fusion pictural depth restoration
  • 相关文献

参考文献5

二级参考文献36

  • 1向桂山,王宣银,梁冬泰.基于人脸肤色和特征的实时检测跟踪算法[J].光电工程,2007,34(4):44-48. 被引量:7
  • 2DARIBO I, SAITO H. A novel inpainting-based layered depth video for 3DTV [ J ]. IEEE Transactions on Broadcasting, 2011:533-541. 被引量:1
  • 3UM G M, KIM T, BANG G. Multi-view 3D video acquisition using hybrid camera with beem spliter [ C ]// 3 DTV Conference : The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). 2011:1-4. 被引量:1
  • 4DARIBO I, TILLIER C, PESQUET-POPESCU B. Distance dependent depth filtering in 3D warping for 3DTV [ C]// Multimedia Signal Processing. 2007:312-315. 被引量:1
  • 5CHEN W Y, CHANG Y L, LIN S F, et al. Efficient depth image based rendering with edge dependent depth filter and interpolation [ C ] // IEEE International Conference on Multimedia and Expo. 2005:1314-1317. 被引量:1
  • 6KIM S Y, CHO J H, KOSCHAN A, et al. Spatial and temporal enhancement of depth images captured by a time-of-flight depth sensor [ C ] // Pattern Recognition (ICPR). 2010:2358-2361. 被引量:1
  • 7ZHU J J, WANG L, YANG R G, et al. Fusion of time-of- flight depth and stereo for high accuracy depth maps [C]//Computer Vision and Pattern Recognition ( CVPR2008 ). 2008 : 1-8. 被引量:1
  • 8WILSON A. Using a depth camera as a touch sensor [C]// ITS' 10 ACM International Conference on Interactive Tabletops and Surfaces. 2010:69-72. 被引量:1
  • 9MATYUNIN S, VATOLIN D, BERDNIKOV Y. Temporal filtering for depth maps generated by kinect depth camera [ C ]//The True Vision-Capture, Transmission and Display of 3 D Video (3 DTV-CON ). 2001 : 1-4. 被引量:1
  • 10Jl X P, WEI Z Q, FENG Y W. Effective vehicle detection technique for traffic surveillance systems [ J ]. Visual Communication & Image Representation, 2005, 17(3) :647-658. 被引量:1

共引文献54

同被引文献25

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部