期刊文献+

基于改进凸包法的肺实质CT图像分割

CT Image Segmentation of Lung Parenchyma Based on Improved Convex Hull Method
下载PDF
导出
摘要 针对计算机辅助诊断的需求,提出一种基于CT图像的肺实质分割方法。首先,使用大津法实现CT图像肺实质预分割,并利用数学形态学去除噪声;然后,采用区域生长法以及小面积删除法完成肺实质分割;最后,使用改进的凸包法对分割后的肺实质CT图像进行边界修复,并将得到的掩膜图像与原图像进行数学运算,得到肺实质感兴趣区域。实验结果表明:本文提出的方法具有分割精确高、鲁棒性强、自动化程度较高的特点。 To meet the needs of computer-aided diagnosis,this paper proposes a method of lung parenchyma segmentation based on CT images.This method first uses Otsu method to realize pre-segmentation,then uses mathematical morphology to remove noise,then uses region growth method and small area deletion method to complete the segmentation of lung parenchyma,and finally,an improved convex hull method is used to perform boundary repair on the segmented picture.A mathematical operation is performed on the obtained mask image and the original image to obtain a parenchymal region of interest.The experimental results prove that the method used in this paper has the advantages of high accuracy,robustness and high degree of automation.
作者 伍冠楚 吴黎明 林耿萱 钟杨 蒋丹凤 Wu Guanchu;Wu Liming;Lin Gengxuan;Zhong Yang;Jiang Danfeng(School of Mechanical and Electrical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《自动化与信息工程》 2020年第6期18-22,共5页 Automation & Information Engineering
关键词 区域生长法 凸包法 肺实质 大津法 regional growth method convex hull method lung parenchyma Otsu
  • 相关文献

参考文献7

二级参考文献142

  • 1杨晓强,李斌,魏生民.基于解剖知识模型的医学图像分割方法研究[J].航天医学与医学工程,2005,18(1):62-65. 被引量:9
  • 2叶鸿瑾,张雪英,何小刚.基于小波变换和中值滤波的医学图像去噪[J].太原理工大学学报,2005,36(5):511-514. 被引量:22
  • 3BalCSy R, Lteberscn R, Reivicn M. A computerized sys-tem forthe elastic matching of deformec radiographic images to ideabized atlas images[J] . J Cornput Assist Tomogr, 983, 7(4): 618-525. 被引量:1
  • 4Stern RL, Cline HE, Johnsor GA, et al. Three dimen-sional imaging of the thoracic cavity [J]. Investigat Ra-dial, 1989,24(12) :282-288. 被引量:1
  • 5Wu M,Chang J. Chiang AA.et al. Use of quantitative CT to predict postoperative lung function in patients with lung cancer[J]. Radiol, 1994,191(11): 257-262. 被引量:1
  • 6Giger ML.Doi K.MacMahon H.et al.Pulmonary nod-ules:computer-aided detection in digital chest images [J].Radiographics,1990,10(1):41-51. 被引量:1
  • 7Bnernan RS, Beck JW, Karobkin M, et al , Volume deter-minations using computed tomography [ J ]. American Journal of Roentqenology. 1982. 138(1).329-333. 被引量:1
  • 8Ettinger DS, Leichner PK,Siegelrran SS, et al , Compu-ted tomography assisted volumetric analysis of primary liver tumor as a measure of response to tberacy[J]. A-mer J Clin Oncol,1985, 8(8):413-418. 被引量:1
  • 9Robinson P J, Kreel L Pulmonary tissue attenuation with computed tomography: companson of inspiration and expiration scans [J].J Comput Assist Tomogr,1979, 3(6) :740-748. 被引量:1
  • 10Karssemeijer N.Van Ernmg L.Eijkman E. Recognition of organsin CT-image sequeqces: a model guided ap-proach [ J ]. Comput Biomed Res. 198S , 21( 9 ) : 434-438. 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部