期刊文献+

基于PCA降维的成对约束半监督聚类集成 被引量:1

Semi-supervised Clustering Ensemble with Pairwise Constraints Based on PCA Dimension Reduction
下载PDF
导出
摘要 针对现有的聚类集成算法大都是无监督聚类集成算法且不能很好地处理高维数据的问题,设计一种基于PCA降维技术的成对约束半监督聚类集成算法(SSCEDR)。SSCEDR方法使用PCA主成分分析对原始数据进行降维,结合半监督聚类集成技术,在降维后的空间中将成对约束等先验知识代入到聚类集成过程中。本文通过在多组数据集上实验来验证算法的有效性。 Aiming at the problem that the existing clustering integration algorithms are unsupervised and cannot deal with high-dimensional data well,this paper proposes a semi-supervised clustering ensemble with pairwise constraints based on PCA dimension reduction(SSCEDR),the SSCEDR method uses PCA principal component analysis to reduce the dimension of the original data.Combined with semi-supervised clustering integration technology,the prior knowledge such as pairwise constraints is substituted into the clustering integration process in the reduced dimension space.The effectiveness of the algorithm is verified by experiments on multiple data sets.
作者 黄欣辰 皋军 黄豪杰 HUANG Xin-chen;GAO Jun;HUANG Hao-jie(School of Information Engineering, Yancheng Institute of Technology, Yancheng 224002, China;School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
出处 《计算机与现代化》 2021年第1期94-99,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61772198)。
关键词 聚类集成 降维 成对约束 半监督 主成分分析 clustering ensemble dimension reduction pairwise constraints semi-supervised principal component analysis
  • 相关文献

参考文献13

二级参考文献109

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2龙腾芳.数据挖掘技术在农业领域中的应用研究[J].微计算机信息,2005,21(06X):42-43. 被引量:21
  • 3秦浩,陈景武.主成分分析与因子分析的关系剖析[J].数理医药学杂志,2006,19(2):152-154. 被引量:11
  • 4赵拥军,陈景武,唐军.主成分分析与因子分析法在医院管理质量综合评价中的应用研究[J].中国卫生统计,2006,23(5):403-406. 被引量:29
  • 5Basu S, Banerjee A, Mooney RJ. A probabilistic framework for semi-supervised clustering. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D, eds. Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2004.59-68. 被引量:1
  • 6Bilenko M, Basu S, Mooney RJ. Integrating constraints and metric learning in semi-supervised clustering. In: Brodley CE, ed. Proc. of the 21st Int'l Conf. on Machine Learning. New York: ACM Press, 2004. 81-88. 被引量:1
  • 7Tang W, Xiong H, Zhong S, Wu J. Enhancing semi-supervised clustering: a feature projection perspective. In: Berkhin P, Caruana R, Wu XD, eds. Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2007. 707-716. 被引量:1
  • 8Basu S, Banerjee A, Mooney RJ. Active semi-supervision for pairwise constrained clustering. In: Jonker W, Petkovic M, eds. Proc. of the SIAM Int'l Conf. on Data Mining. Cambridge: MIT Press, 2004. 333-344. 被引量:1
  • 9Yan B, Domeniconi C. An adaptive kernel method for semi-supervised clustering. In: Fiirnkranz J, Scheffer T, Spiliopoulou M, eds. Proc. of the 17th European Conf. on Machine Learning. Berlin: Sigma Press, 2006. 18-22. 被引量:1
  • 10Yeung DY, Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition, 2006,39(5):1007-1010. 被引量:1

共引文献156

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部