期刊文献+

基于C4.5决策树的HTTPS加密流量分类方法 被引量:7

HTTPS Encrypted Traffic Classification Method Based on C4.5 Decision Tree
下载PDF
导出
摘要 HTTPS协议基于原本不具有加密机制的HTTP协议。将其与SSL/TLS协议组合,在传输数据之前,客户端与服务器端之间进行一次SSL/TLS握手,并协商通信过程中使用的加密套件,以安全地交换密钥并且实现双方的身份验证,建立安全通信线路后,对HTTP应用协议数据进行加密传输,防止通信内容被窃听和篡改。传统的基于有效载荷的方法已无法处理加密流量,基于流量特征和机器学习的加密流量分类和分析成为目前的主流方法,其通过建立监督学习模型,在保证加密完整性的条件下,基于网络流数据特征工程,应用C4.5决策树算法,在局域网环境中对腾讯网中应用HTTPS加密数据传输流进行分析,可有效实现对该网站HTTPS加密流量进行模块内容的精确分类。 The HTTPS protocol is based on the HTTP protocol that does not have an encryption mechanism.By combining with the SSL/TLS protocol,an SSL/TLS handshake is performed between the client and the server before the data is transmitted,and the cipher suite used in the communication process is negotiated to securely exchange secret keys and implement mutual authentication.After establishing a secure communication line,the HTTP application protocol data is encrypted and transmitted,preventing the risk of eavesdropping and tampering of the communication content.The traditional payload-based method can’t handle encrypted traffic.The classification and analysis of encrypted traffic based on traffic characteristics and machine learning have become the mainstream method.By establishing a supervised learning model,based on network flow data feature engineering,under the condition of ensuring encryption integrity,the C4.5 decision tree algorithm is applied in the LAN environment to analyze the application of HTTPS encrypted data transmission stream in Tencent network,which can effectively realize accurate classification of the website HTTPS encrypted traffic.
作者 邹洁 朱国胜 祁小云 曹扬晨 ZOU Jie;ZHU Guo-sheng;QI Xiao-yun;CAO Yang-chen(School of Computer and Information Engineering,Hubei University,Wuhan 430062,China;School of Chemistry and Chemical Engineering,Hubei University,Wuhan 430062,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S01期381-385,共5页 Computer Science
基金 赛尔网络下一代互联网技术创新项目(NGII20180411)。
关键词 HTTPS SSL/TLS 加密流量 决策树 分类 HTTPS SSL/TLS Encrypted traffic Decision tree Classification
  • 相关文献

参考文献2

二级参考文献32

  • 1Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf. 被引量:1
  • 2Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549. 被引量:1
  • 3Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54. 被引量:1
  • 4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf. 被引量:1
  • 5Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf. 被引量:1
  • 6Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324. 被引量:1
  • 7Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573. 被引量:1
  • 8Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf. 被引量:1
  • 9Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf. 被引量:1
  • 10Bernaille L, Teixeira R, Salamatian K. Early application identification. In: Proc. of the Conf. on Future Networking Technologies 2006 (CoNEXT 2006). Lisboa, 2006. http://portal.acm.org/citation.efm?id=1368445. 被引量:1

共引文献175

同被引文献74

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部