期刊文献+

PCA在克服变量多重相关性中的局限作用 被引量:1

Limitations of PCA in solving the multiple correlations between variables
下载PDF
导出
摘要 针对主成分分析(PCA)在非线性特征的观测变量中应用的局限作用,对PCA进行了理论研究。基于欧氏空间和统计方法,讨论了PCA的数学本质,以变量高度多重相关为例,分析了非线性系统结构,提出并证明了PCA在克服变量多重相关性和多指标系统评估中存在局限性的必然原因。针对一些具体的非线性问题,提出了若干改进的PCA方法,以及消除其局限性的方法和建议。 In view of the limitations of PCA's application to variables observed with nonlinear features, Principal Component Analysis (PCA) was studied theoretically. Based on the coordinates of Euclidean-space and statistical method, the study discussed the mathematical essence of PCA, and analyzed the structure of nonlinear system, and then proposed and proved the causes of the limitations of PCA in (a) solving the multiple correlations between variables efficiently and (b) using in multiple indexes system evaluation under the condition of the multiple correlations by an example of multiple correlations between variables in high degree. For some nonlinear problems, the improvement on PCA and solutions to the limitations were presented accordingly.
作者 郭凯红
出处 《计算机应用》 CSCD 北大核心 2007年第9期2346-2348,2352,共4页 journal of Computer Applications
关键词 主成分分析 多指标 多重相关 数据变异与相似 Principal Component Analysis(PCA) multiple indexes multiple correlations data variety and similarity
  • 相关文献

参考文献24

二级参考文献117

共引文献560

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部