期刊文献+

基于运动想象的脑电信号特征提取研究 被引量:2

Feature extraction of EEG signals based on motor imagery
下载PDF
导出
摘要 基于运动想象脑电信号的脑-机接口系统在医疗领域具有广阔的应用前景,被应用于运动障碍人士的辅助控制以及脑卒的预后康复。由于运动想象的脑电信号信噪比低、不平稳以及差异性显著,对脑电信号识别带来负面影响。一个有效的特征提取算法能够提高脑-机系统的脑电信号识别率。提出一种多通道的脑电信号特征提取方法,将数据矩阵分解为基矩阵与系数矩阵的乘积,以类间离散度做为性能判据对系数矩阵进行特征提取,提取可分性更高、维数更少的特征。结合脑电信号识别领域常见的分类器在2008年BCI竞赛数据集上进行验证,证明所提方法是有效的。 The brain-computer interface(BCI)system based on motor imagery(MI)electroencephalogram(EEG)has a broad application prospect in the medical field,which can be applied to the auxiliary control of the disabled and the prognosis and rehabilitation of the brain.Because of the low SNR,instability and significant difference of EEG signal in motion imagination,it has a negative effect on EEG signal recognition.An effective feature extraction method can enhance the accuracy of EEG in BCI system.In this paper,a multi-channel feature extraction method for EEG signals is proposed.First of all,the data matrix is decomposed into the product of the basis matrix and the coefficient matrix.Then the coefficient matrix is extracted by using the inter-class dispersion as the performance criterion to extract the features with higher separability and less dimension.The experiment of BCI 2008 competition data set shows that the method is effective.
作者 郭闽榕 Guo Minrong(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350000,China)
出处 《信息技术与网络安全》 2021年第1期62-66,共5页 Information Technology and Network Security
关键词 脑机接口 脑电信号 运动想象 特征提取 矩阵分解 brain-computer interface electroencephalogram motor imagery feature extraction matrix decomposition
  • 相关文献

参考文献3

二级参考文献137

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2魏景汉,罗跃嘉.(2010).事件相关电位原理与技术北京:科学出版社. 被引量:4
  • 3Wolpaw J R, Birbaumer N, Heetderkd W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrono L A, Robin- son C J, Vaughan T M. Brain-computer interface technol- ogy: a review of the first international meeting. IEEE Trans- actions on Rehabilitation Engineering, 2000, 8(2): 164-173. 被引量:1
  • 4Vidal J J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2: 157-180. 被引量:1
  • 5Gazzaniga M S, Ivry R, Mangun G R. Cognitive Neuro- science. New York: W. W. Norton and Company, Inc., 2002. 被引量:1
  • 6Galambos R, Sheatz G C. An electroencephalography study of classical conditioning. American Journal of Physiology, 1962, 203(1): 173-184. 被引量:1
  • 7Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 1964, 203(4943): 380-384. 被引量:1
  • 8Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor con- trol. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252-259. 被引量:1
  • 9Mason S G, Bashshati A, Fatourechi M, Navarro K F, Birch G E. A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007, 35(2): 137 -169. 被引量:1
  • 10Vaughan T M , Heetderks W J, Trejo L J, Rymer W Z, Weinrich M, Moore M M, Kiibler A, Dobkin B H, Birbaumer N, Donchin E, Wolpaw E W, Wolpaw J R. Brain-computer interface technology: a review of the second international meeting. IEEE Transactions on Rehabilitation Engineering, 2003, 11(2): 94-109. 被引量:1

共引文献113

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部