摘要
介绍了固体表面的典型润湿理论,主要包括Young’s方程、Wenzel模型、Cassie-Baxter模型、Wenzel-Cassie模型之间的转换理论以及动态润湿模型。对仿生非均匀润湿性表面的国内外发展动态、表面制备技术以及表面结露特性等进行了归纳总结。针对仿生非均匀润湿性表面在集水、换热、脱盐、微流体控制以及抗结冰等方面的应用现状及潜在应用前景进行了阐述,揭示了非均匀润湿性表面利于强化结露及提高换热效率的主要原因为:亲水微区强化了表面形核结露,疏水微区保证了露滴脱附性能,从而使表面结露及脱附达到相对平衡而保证总体效果。最后指出了仿生非均匀润湿性表面目前存在设备昂贵、制备工艺复杂以及成本较高等限制其批量化制备应用的问题,阐明了利于批量化制备应用的涂层调控技术在非均匀润湿性表面制备中的优势,并对非均匀润湿性表面的工业应用前景和发展方向作了展望。
The work mainly introduced the typical wetting theory of solid surface,including Young’s equation,Wenzel model,Cassie-Baxter model,transformation theory between Wenzel and Cassie model and dynamic wetting model.The development trend,surface preparation technology and surface condensation characteristics of bionic hybrid wetting surface at home and abroad were summarized.The application status and potential application prospect of bionic hybrid wetting surface in water collection,heat exchange,desalination,micro fluid control and anti-icing were described.It was revealed that hybrid wetting surface was beneficial to strengthen condensation and improve the droplets departure.The main reason of heat transfer efficiency was that the hydrophilic micro area strengthened the nucleation and condensation on the surface,and the superhydrophobic micro area ensured the removal performance of the droplet,so that the surface condensation and removal reached a relative balance and ensured the overall effect.At last,it pointed out that at present,there were some problems such as expensive equipment,complex preparation process and high cost,which limited the application of batch preparation of bionic hybrid wetting surface.The advantages of coating control technology for mass preparation and application in the preparation of hybrid wetting surfaces were expounded,and the industrial application and development direction of hybrid wetting surfaces were prospected.
作者
汪希奎
张友法
余新泉
WANG Xi-kui;ZHANG You-fa;YU Xin-quan(School of Electrical and Mechanical Engineering,Pingdingshan University,Pingdingshan 467000,China;School of Materials Science and Engineering,Southeast University,Nanjing 211189,China;Jiangsu Key Laboratory of Advanced Metallic Materials,Southeast University,Nanjing 211189,China)
出处
《表面技术》
EI
CAS
CSCD
北大核心
2020年第12期93-115,共23页
Surface Technology
基金
国家自然科学基金项目(51671055,52071076)
平顶山学院高层次人才科研基金项目(PXY-BSQD-202014)
河南省高等学校重点科研项目(21A430029)
平顶山学院国家级科研项目培育基金(PXY-PYJJ-202105)。
关键词
超疏水
超亲水
非均匀润湿性
结露
水收集
传热
superhydrophobic
superhydrophilic
hybrid wetting
condensation
water collection
heat transfer