期刊文献+

超浸润不锈钢纤维毡制备及其乳化油/水分离性能 被引量:5

Fabrication and Emulsified Oil/Water Separation Properties of Superwettable Stainless Steel Fiber Felts
下载PDF
导出
摘要 目的在不锈钢纤维毡表面进行超浸润性微纳结构的构建,减小纤维毡孔径并提升其耐污染性,实现乳化油的高效分离。方法先采用双阳极电化学沉积法,在不锈钢纤维丝表面沉积微米级铜颗粒,再采用双阴极电化学氧化法,将铜颗粒氧化为具有微纳结构的Cu(OH)_2纳米针。通过扫描电子显微镜、X射线衍射仪、接触角测量仪、油水分离测试、紫外可见分光光度计等手段,对样品的微观形貌、组成成分、润湿性和油水分离性能等进行了表征。结果经微纳米结构构建后,不锈钢纤维毡表面的浸润性由疏水(135°)变为超亲水(≈0°)/水下超疏油(161°),水包油乳液的分离效率可达99%,循环分离8次后,分离效率依然在99%以上,分离后滤液的透光率在98%以上,水包油中的油滴被有效去除。结论通过电沉积-电化学氧化法可在不锈钢毡纤维表面构建多孔微纳复合结构,该表面具有优异的超亲水/水下超疏油性能,可对水包油乳化油进行高效分离,且循环分离多次后未见明显衰减,显示出良好的耐污染性。 The work aims to reduce pore size and increase stain resistance of the fiber felts by building superwetting micro-nanostructure on surface of stainless steel fiber felts, so as to achieve efficient separation of emulsified oil. Micron-sized copper particles were deposited on the surface of stainless steel fiber felts in the method of double-anodic electrochemical deposition. Then copper particles were oxidized into Cu(OH)2 nanoneedles with micro-nano structures in the method of electrochemical oxidation. Microstructure, chemical composition, wettability, oil-water separation property of the sample were characterized with scanning electron microscopy, X-ray diffractometer, contact angle meter, oil-water separation test and UV-visible spectrophotometer. After fabrication of micro-nanostructures, wettability of the stainless steel fiber felt transformed into super-hydrophilicity (≈0°) and underwater superoleophobicity (161 °) from hydrophobicity (135 °). Separation efficiency of oil-in-water emulsion could reach up to 99%, even after 8 times of cycling separations. The UV-vis light transmittance could reach over 98% after seperation. Oil droplets in the oil-in-water can be effectively removed. Porous micro-nano composite structures can be successfully constructed on the surface of stainless steel fiber felts in the method of electrodeposition-electrochemical oxidation, and the surface exhibits excellent superhydrophilic/underwater superoleophobic property, which can separate the oil-in-water emulsified oil effectively. After repeated separation, the separation efficiency does not reduce significantly, which proves its excellent stain resistance.
出处 《表面技术》 EI CAS CSCD 北大核心 2018年第1期1-7,共7页 Surface Technology
基金 国家自然科学基金(51671055) 江苏省自然科学基金(BK20151135) 东南大学国家大学生创新性实验计划(201610286081)~~
关键词 不锈钢纤维毡 超亲水/水下超疏油 乳化油 分离 stainless steel fiber felts superhydrophilic/underwater superoleophobic emulsified oil separation
  • 相关文献

参考文献2

二级参考文献67

  • 1Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition,2004,43(15):2012-2014. 被引量:1
  • 2Pan Q, Wang M, Wang H. Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes[J]. Applied Surface Science,2008,254(18):6002-6006. 被引量:1
  • 3Kota1 A K, Kwon1 G, Choi W, et al. Hygro-responsive membranes for effective oil-water separation[J]. Nature Communication,2012,3:2027-2034. 被引量:1
  • 4Zhou X Y, Zhang Z Z, Xu X H, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation[J]. Applied Material Interfaces,2013,5(15):7208-7214. 被引量:1
  • 5Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communication,2012,48(86):10660-10662. 被引量:1
  • 6Nguyen D D, Tai N H, Lee S B, et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J]. Energy Environment Science,2012,5(7):7908-7912. 被引量:1
  • 7Zang D M, Wu C X, Zhu R W, et al. Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water[J]. Chemical Communication,2013,49(75):8410-8412. 被引量:1
  • 8Singh D P, Neti N R, Sinha A S K, et al. Growth of different nanostructures of Cu2O(nanothreads, nanowires, and nanocubes)by simple electrolysis based oxidation of copper[J]. The Journal of Physical Chemical C,2007,111(4):1638-1645. 被引量:1
  • 9Lee S H, Her Y S, Matijevi E. Preparation and growth mechanism of uniformcolloidal copper oxide by the controlled double-jet precipitation[J]. Journal of Colloid Interface Science,1997,186(1):193-202. 被引量:1
  • 10Marmur A. The lotus effect: superhydrophobicity and metastability[J]. Langmuir,2004,20(9):3517-3519. 被引量:1

共引文献19

同被引文献68

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部