期刊文献+

基于线程融合特征的Windows恶意代码检测与分析 被引量:8

Detection and Analysis ofWindows Malicious Code Based on Thread Fusion Feature
下载PDF
导出
摘要 针对当前恶意代码动态分析中存在的提取特征方式单一、检测率低、误报率高等问题,提出一种线程融合特征分析检测方法。基于传统沙箱分析报告,该方法利用线程号分别建立样本API调用序列,将API线程内的调用顺序及返回值作为API参数构建特征,在特征处理阶段分别用统计、计算两种方法构建两类特征,并将LR(Logistic Regression)算法改进的Vec-LR算法用于二分类判断,并与其他算法及软件进行比较。经实验证明,该方法准确率优于当前主流检测方法,可达94.37%。 Aiming at the problems of single feature extraction,low detection rate and high false alarm rate in the current dynamic analysis of malicious code,a thread fusion feature analysis and detection method is proposed.Based on the traditional sandbox analysis report,this method uses the thread number to establish the sample API call sequence,takes the call sequence and return value in the API thread as the characteristics of API parameter construction,uses the statistical and computational methods to construct the two types of characteristics in the feature processing stage,and uses the Vec-LR algorithm improved by LR algorithm for binary judgment,and compares it with other algorithms and software.Experimental results show that the accuracy of this method is better than the current mainstream detection method,up to 94.37%.
作者 周杨 芦天亮 杜彦辉 郭蕊 暴雨轩 李默 ZHOU Yang;LU Tianliang;DU Yanhui;GUO Rui;BAO Yuxuan;LI Mo(School of Police Information Engineering and Cyber Security,People’s Public Security University of China,Beijing 100038,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第23期103-108,共6页 Computer Engineering and Applications
基金 “十三五”国家密码发展基金密码理论研究重点课题(No.MMJJ20180108) 中国人民公安大学2020年基本科研业务费重大项目(No.2020JKF101)。
关键词 恶意代码 动态分析 线程融合特征 malicious code dynamic analysis thread fusion feature
  • 相关文献

参考文献5

二级参考文献24

  • 1陈洪泉.恶意软件检测中的特征选择问题[J].电子科技大学学报,2009,38(S1):53-56. 被引量:9
  • 2SEIFERT C, WELCH I, KOMISARCZUK P. Identification of malicious Web pages with static heuristics [ C ]//Proc of Australasian Telecom- munication Networks and Applications Conference. 2008:91-96. 被引量:1
  • 3RICHARDSON R. 12th annual edition of the CSI computer crime and security survey[ R ]. [ S. 1. ] :Computer Security Institution ,2008. 被引量:1
  • 4McAfee threats report: fourth quarter 2010 [ R]. [ S. 1. ] : McAfee Labs,2011. 被引量:1
  • 5HAN Lan-sheng, FU Cai, ZOU De-qing, et al. Task-based behavior de- tection of illegal codes [ J ]. Mathematical and Computer Model- ling,2012,55( 1 ) :80-86. 被引量:1
  • 6WANG C,PANG J M,ZHAO R C, et al. Malware detection based on suspicious behavior identification [ C ]//Proc of the 1st International Workshop on Education Technology and Computer Science. 2009: 198- 202. 被引量:1
  • 7TIAN R,BATTEN L M,ISLAM R,et al. Differentiating malware from cleanware using behavioural analysis [ C ]//Pro~ of the 5th IEEE In- ternational Conference on Malicious and Unwanted Software. 2010:23- 30. 被引量:1
  • 8RIECK K, LASKOV P. Linear-time computation of similarity measures for sequential data [ J]. Journal of Machine Learning Research, 2008,9(6/1 ) :23-48. 被引量:1
  • 9AHMED F, HAMEED H, SHAFIQ M Z, et al. Using spatio-temporal information in API calls with machine learning algorithms for malware detection [ C ]//Proc of the 2nd ACM Workshop on Security and Artificial Intelligence. New York : ACM Press, 2009 : 55- 62. 被引量:1
  • 10SZOR P. The art of computer virus research and defense [ M ]. [ S. 1. ] : Addison-Wesley Professional ,2005. 被引量:1

共引文献29

同被引文献58

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部