期刊文献+

基于特征频繁度的勒索软件检测方法研究 被引量:8

Research on detecting ransomware based on characteristic frequencies
下载PDF
导出
摘要 通常杀毒软件基于静态检测,检测勒索软件时,存在检测率低的问题。对勒索软件行为进行分析时,发现勒索软件有频繁读取、加密和删除文件等特点。根据其特点,提出一种基于行为频繁度的检测方法。该方法基于动态分析,计算勒索软件对特定后缀、路径以及API调用等行为的频繁度,并结合内存行为构建特征,再使用优化参数后的随机森林算法构造勒索软件检测模型。测试数据集包括16类勒索软件家族的1 412个软件和379个正常软件。并与其他算法及多种杀毒软件进行比较。实验结果表明该方法能很好地检测勒索软件以及未知家族的勒索样本。 Antivirus software based on static detection have a low detection rate for ransomware.This paper discovered some kinds of characteristics of the behavior when analyzing the ransomware,such as hard disk frequently reading,encrypting and deleting the document,etc.According to those characteristic,this paper proposed a method which combined frequency based feature construction with memory feature.The method was based on dynamic analysis as well as combining memory behavior with frequency of behaviors such as specific suffix,path and API call.In addition,it used random forest algorithm with optimize parameters to construct the ransomware detection model.Experiment dataset includes 16 class family of 1 412 ransomware and 397 normal software.Compared with other algorithms as well as a variety of anti-virus software,the experimental results show that proposed method performs well in detecting ransomware and unknown types of extortion samples.
作者 龚琪 曹金璇 芦天亮 李丁蓬 Gong Qi;Cao Jinxuan;Lu Tianliang;Li Dingpeng(College of Information Technology & Network Security,People's Public Security University of China,Beijing 100038,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第8期2435-2438,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61602489) 国家科技部网络空间安全重点专项资助项目(SQ2017YFGX110081-04) 赛尔网络下一代互联网技术创新项目(NGII20160405)
关键词 动态行为特征 频繁度 随机森林 勒索软件 沙箱 dynamic behavior frequency random forest ransomware sandbox
  • 相关文献

参考文献4

二级参考文献38

  • 1SEIFERT C, WELCH I, KOMISARCZUK P. Identification of malicious Web pages with static heuristics [ C ]//Proc of Australasian Telecom- munication Networks and Applications Conference. 2008:91-96. 被引量:1
  • 2RICHARDSON R. 12th annual edition of the CSI computer crime and security survey[ R ]. [ S. 1. ] :Computer Security Institution ,2008. 被引量:1
  • 3McAfee threats report: fourth quarter 2010 [ R]. [ S. 1. ] : McAfee Labs,2011. 被引量:1
  • 4HAN Lan-sheng, FU Cai, ZOU De-qing, et al. Task-based behavior de- tection of illegal codes [ J ]. Mathematical and Computer Model- ling,2012,55( 1 ) :80-86. 被引量:1
  • 5WANG C,PANG J M,ZHAO R C, et al. Malware detection based on suspicious behavior identification [ C ]//Proc of the 1st International Workshop on Education Technology and Computer Science. 2009: 198- 202. 被引量:1
  • 6TIAN R,BATTEN L M,ISLAM R,et al. Differentiating malware from cleanware using behavioural analysis [ C ]//Pro~ of the 5th IEEE In- ternational Conference on Malicious and Unwanted Software. 2010:23- 30. 被引量:1
  • 7RIECK K, LASKOV P. Linear-time computation of similarity measures for sequential data [ J]. Journal of Machine Learning Research, 2008,9(6/1 ) :23-48. 被引量:1
  • 8AHMED F, HAMEED H, SHAFIQ M Z, et al. Using spatio-temporal information in API calls with machine learning algorithms for malware detection [ C ]//Proc of the 2nd ACM Workshop on Security and Artificial Intelligence. New York : ACM Press, 2009 : 55- 62. 被引量:1
  • 9SZOR P. The art of computer virus research and defense [ M ]. [ S. 1. ] : Addison-Wesley Professional ,2005. 被引量:1
  • 10YASON V M. The art of unpacking[ EB/OL]. http://www, blackhat: com/presentations/bh-usa: 07/yason/whitepaper/bh-usa-07-yason-wp.pdf. 被引量:1

共引文献44

同被引文献74

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部