期刊文献+

基于物联网的电梯起重机械钢丝绳断裂故障在线监测方法 被引量:5

Online monitoring method for broken fault of steel wire rope of elevator hoisting machine based on internet of things
原文传递
导出
摘要 为了提高电梯起重机械钢丝绳断裂故障检测能力,提出基于物联网的电梯起重机械钢丝绳断裂故障在线监测方法。结合电梯起重机械钢丝绳的可控性负荷特征检测方法,进行故障大数据挖掘,采用物联网技术进行电梯起重机械钢丝绳故障特征的多维信息融合检测,提取电梯起重机械钢丝绳故障的高分辨关联特征量,根据电子元件和机械元件的故障相似度进行故障辨识,构建电梯起重机械钢丝绳故障的多元信息监测模型,根据信息监测结果,进行电梯起重机械钢丝绳故障检测和智能诊断。仿真结果表明,采用该方法进行电梯起重机械钢丝绳故障监测的准确性较高,输出稳定性较好,提高了电梯起重机械钢丝绳的故障自适应诊断和检测能力。 In order to improve the ability of wire rope fracture fault detection of elevator lifting machinery,an on-line monitoring method of wire rope fracture fault of elevator lifting machinery based on Internet of things is proposed.Combined with the controllable load characteristic detection method of elevator lifting machinery wire rope,the fault big data mining is carried out,and the multi-dimensional information fusion detection of elevator lifting machinery wire rope fault feature is carried out by using Internet of things technology.The high resolution correlation characteristic quantity of elevator lifting machinery wire rope fault is extracted,and the fault identification is carried out according to the fault similarity between electronic components and mechanical components.The multi-element information monitoring model of elevator hoisting machinery wire rope fault is constructed.According to the information monitoring results,the fault detection and intelligent diagnosis of elevator lifting machinery wire rope are carried out.The simulation results show that the accuracy of fault monitoring of elevator hoisting machinery wire rope is high and the output stability is good,which improves the fault adaptive diagnosis and detection ability of elevator lifting machinery wire rope.
作者 王燕 WANG Yan(Lanzhou Resources&Environment Voc-Tech College,Lanzhou 730021,China)
出处 《自动化与仪器仪表》 2020年第10期180-183,共4页 Automation & Instrumentation
基金 甘肃省高等学校科研能力提升项目:基于物联网+大数据的电梯故障智能监测系统的研究(No.2019A-213)。
关键词 物联网 电梯起重机械 钢丝绳 断裂故障 在线监测 Internet of things elevator crane wire rope fracture failure on-line monitoring
  • 相关文献

参考文献11

二级参考文献104

共引文献171

同被引文献28

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部