期刊文献+

基于混合暗通道算法的图像去雾研究 被引量:3

Image Dehazing Based on Mixed Dark Channel Prior
下载PDF
导出
摘要 基于混合暗通道算法对图像去雾进行了研究。首先通过阈值划分混合暗通道,混合暗通道为近景区域和远景区域之和,最大化相似度评价函数获得混合暗通道微调系数;接着通过像素点与区域中心点的暗通道光强差值实现近景区域去雾,远景区域去雾规则是通过像素的膨胀、腐蚀实现;最后给出了算法流程。实验仿真显示该算法去雾图像视觉比其它算法的效果好,定量分析指标较优。 The image dehazing is researched based on mixed dark channel prior.Firstly,threshold was divided mixed dark channel,mixed dark channel prior was combined with near and far scene,and evaluation function of maximum similarity was obtained fine-tuning coefficient of mixed dark channel prior.Secondly,near scene was used light intensity difference of dark channel of pixel point and region center,and far scene was used expansion and corrosion of pixel.Finally,the algorithm process was given.Experimental simulation shows that the mixed dark channel prior has better visual effect and quantitative analysis indexes than other algorithms.
作者 邵明省 SHAO Ming-sheng(Department of Electronic Information Engineering,Hebi Polytechnic,Hebi,Henan 458030,China)
出处 《计量学报》 CSCD 北大核心 2020年第7期796-800,共5页 Acta Metrologica Sinica
基金 河南省高等职业学校青年骨干教师培养计划项目(2019GZGG026) 鹤壁职业技术学院青年骨干教师培养计划项目(2019HYQNJS-001)。
关键词 计量学 图像去雾 混合暗通道算法 阈值划分 近景区域 远景区域 metrology image dehazing mixed dark channel prior threshold division near scene far scene
  • 相关文献

参考文献12

二级参考文献86

  • 1刘祖军,刘纯亮,梁志虎,张欣.基于动态直方图均匀化的对比度增强方法[J].光学技术,2005,31(3):376-379. 被引量:9
  • 2王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 3詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 4HE K, SUN J, TANG X O. Single image haze removal u- sing dark channel prior[ C ]//Proc. IEEE CVPR 09. Wash- ington: IEEE Computer Society, 2009 : 1956-1963. 被引量:1
  • 5Nayar S K, Narasimhan S G. Vision in bad weather. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 820-827. 被引量:1
  • 6Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA:IEEE, 2000. 598-605. 被引量:1
  • 7Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):713-724. 被引量:1
  • 8Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3):511-525. 被引量:1
  • 9Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In:Proceedings of the 2005 SPIE 5888, Polarization Science and Remote Sensing II. San Diego, USA:SPIE, 2005. 36-45. 被引量:1
  • 10Tan R T. Visibility in bad weather from a single image. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008. 1-8. 被引量:1

共引文献209

同被引文献24

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部