期刊文献+

Objective measurement for image defogging algorithms 被引量:4

Objective measurement for image defogging algorithms
下载PDF
导出
摘要 Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way.In this method,the absolute difference was computed between the synthetic image with and without fog.The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way.For these methods,an assessment function was defined to evaluate algorithm performance from the function value.Using the defogging algorithm comparison,the experimental results demonstrate the effectiveness and reliability of the proposed methods. Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations, three new methods for assessing the defogging algorithm were proposed. One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way. In this method, the absolute difference was computed between the synthetic image with and without fog. The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way. For these methods, an assessment function was defined to evaluate algorithm performance from the function value. Using the defogging algorithm comparison, the experimental results demonstrate the effectiveness and reliability of the proposed methods.
出处 《Journal of Central South University》 SCIE EI CAS 2014年第1期272-286,共15页 中南大学学报(英文版)
基金 Projects(91220301,61175064,61273314)supported by the National Natural Science Foundation of China Project(126648)supported by the Postdoctoral Science Foundation of Central South University,China Project(2012170301)supported by the New Teacher Fund for School of Information Science and Engineering,Central South University,China
关键词 image defogging algorithm image assessment simulated foggy image fog density human visual perception 评估算法 图像退化 客观测量 评估方法 合成图像 模型模拟 视觉感知 评估系统
  • 相关文献

参考文献2

二级参考文献129

  • 1Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254. 被引量:1
  • 2Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193. 被引量:1
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. 被引量:1
  • 4Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332. 被引量:1
  • 5Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525. 被引量:1
  • 6Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 7Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991. 被引量:1
  • 8Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179. 被引量:1
  • 9Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467. 被引量:1
  • 10Narasimhan S G, Nayar S K. Interactive (de) weathering of an image using physical models. In: Proceedings of the ICCV Workshop on Color and Photometric Methods in Computer Vision. Nice, France: IEEE, 2003. 1387-1394. 被引量:1

共引文献208

同被引文献28

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部