期刊文献+

求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法

A PRECONDITIONED MODULUS-BASED MATRIX SPLITTING ITERATION METHOD FOR SOLVING THE LINEAR COMPLEMENTARITY PROBLEM WITH TOEPLITZ MATRIX
原文传递
导出
摘要 针对系数矩阵为对称正定Toeplitz矩阵的线性互补问题,本文提出了一类预处理模系矩阵分裂迭代方法.先通过变量替换将线性互补问题转化为一类非线性方程组,然后选取Strang或T.Chan循环矩阵作为预优矩阵,利用共轭梯度法进行求解.我们分析了该方法的收敛性.数值实验表明,该方法是高效可行的. In this paper,a preconditioned modulus-based matrix splitting iteration method is presented for solving the linear complementarity problem with a symmetric positive-defined Toeplitz matrix.Firstly we transformed the linear complementarity problem into a nonlinear equations,then solve it by using preconditioned conjugate gradient method with Strang precondition matrix or T.Chan precondition matrix.We analyzed the convergence of the new method,and confirmed its efficiency through some numerical examples.
作者 吴敏华 李郴良 Wu Minhua;Li Chenliang(Guangdong University of Finance School of Financial Mathematics&Statistics,Guangzhou 510521,China;School of Mathematics and Computing Science,Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《计算数学》 CSCD 北大核心 2020年第2期223-236,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(11661027) 广西自然科学基金项目资助(2015GXNSFAA139014) 国家重大仪器专项(61627807)资助.
关键词 模系矩阵分裂迭代方法 预优共轭梯度法 TOEPLITZ矩阵 线性互补问题 modulus-based matrix iteration method preconditioned conjugate gradient method Toeplitz matrix linear complementarity problems
  • 相关文献

参考文献3

二级参考文献31

  • 1Bai Z Z. A class of two-stage iterative methods for systems of weakly nonlinear equations[J]. Numer. Algorithms, 1997, 14: 295-319. 被引量:1
  • 2Bai Z Z. Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations[J]. Numer. Algorithms, 1997, 15: 347-372. 被引量:1
  • 3Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity prob- lem[J]. SIAM J. Matrix Anal. Appl., 1999, 21:67 78. 被引量:1
  • 4Bai Z Z. Convergence analysis of the two-stage multisplitting method[J]. Calcolo, 1999, 36:63 -74. 被引量:1
  • 5Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problem- s[J]. Numer. Linear Algebra Appl., 2010, 17: 917-933. 被引量:1
  • 6Bai Z Z and Evans D J. Matrix multisplitting relaxation methods for linear complementarity problems[J]. Int. J. Comput. Math., 1997, 63: 309-326. 被引量:1
  • 7Bai Z Z and Evans D J. Matrix multisplitting methods with applications to linear complemen- tarity problems: parallel synchronous and chaotic methods[J]. Rseaux et Systmes R6partis: Calculateurs Parallel~s, 2001, 13: 125-154. 被引量:1
  • 8Bai Z Z, Sun J C and Wang D R. A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations[J]. Comput. Math. Appl., 1996, 32: 51-76. 被引量:1
  • 9Bai Z Z and Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2012, DOI: 10.1002/nla.1835. 被引量:1
  • 10Bai Z Z and Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numer. Algorithms, 2012, DOI: 10.1007/sl1075-012- 9566-x. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部