摘要
模系矩阵分裂迭代方法是求解大型稀疏线性互补问题的有效方法之一.本文的目标是归纳总结模系矩阵分裂迭代方法的最新发展和已有成果,主要内容包括相应的多分裂迭代方法,二级多分裂迭代方法和两步多分裂迭代方法,以及这些方法的收敛理论.
The modulus-based matrix splitting iteration method is a powerful tool for solving large sparse linear complementarity problems. The goal of this paper is to summarize its recent development and existing results, which mainly include the corresponding multisplitting iteration methods, two-stage multisplitting iteration methods and two-step multisplitting iteration methods, as well as their convergence theories.
出处
《计算数学》
CSCD
北大核心
2012年第4期373-386,共14页
Mathematica Numerica Sinica
关键词
线性互补问题
模系方法
矩阵多分裂
二级多分裂
linear complementarity problem
modulus-based method
matrix multisplitting
two-stage multisplitting