摘要
考虑两步模系矩阵分裂算法求解弱非线性互补问题,理论分析给出了当系数矩阵为正定矩阵或H+-矩阵时迭代法的收敛性质和两步模系超松弛迭代法的参数选取范围.数值实验表明,两步模系矩阵分裂算法是行之有效的,并在迭代步数和迭代时间上均优于模系矩阵分裂算法.
Two-step modulus-based matrix splitting algorithms are proposed to solve weakly nonlinear complementarity problems. Convergence theory is established when the system matrix is either positive definite or an H+- matrix. Moreover, the choice of the parameters for two-step modulus-based successive overrelaxation methods is also discussed. Numerical experiments show that the proposed methods are efficient and better than the modulus-based matrix splitting methods in aspects of iteration steps and CPU time.
作者
李蕊
殷俊锋
LI Rui YIN Junfeng(School of Mathematical Sciences, Tongii University, Shanghai 200092, China College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China)
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017年第2期296-301,共6页
Journal of Tongji University:Natural Science
基金
国家自然科学基金(No:11271289)
关键词
矩阵分裂
两步模系算法
弱非线性互补问题
matrix splitting
two-step modulus-based algorithms
weakly nonlinear complementarity problems