期刊文献+

隐式双离散方法定价Merton跳扩散期权模型

An Implicit Double Discretization Method for Pricing Options under Metron's Jump-diffusion Model
下载PDF
导出
摘要 构造隐式双离散方法定价Merton跳扩散模型下的欧式和美式期权.给出了该离散方法的稳定性分析.数值实验表明,所构造的方法是有效稳健的,比显式格式具有明显的优势. An implicit double discretization method is developed for pricing European and American options under Merton's jump-diffusion model. Stability of the method is discussed. Numerical experiments show that the proposed method is effective and robust, and has advantages over the explicit scheme.
作者 豆铨煜 殷俊锋 甘小艇 DOU Quanyu YIN Junfeng GAN Xiaoting(School of Mathematical Sciences, Tongji University, Shanghai 200092, China School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong 675000, China)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第2期302-308,共7页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(No:11271289) 中央高校基本科研业务费专项资金
关键词 隐式双离散 Merton跳扩散期权模型 稳定性 implicit double discretization Merton's jumpdiffusion options model stability
  • 相关文献

参考文献2

二级参考文献46

  • 1Black F, Scholes M. The pricing of options and corporate liabilities [J]. J Polit Econ, 1973, 81(3): 637-654. 被引量:1
  • 2Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options [J]. Review Financial Stud, 1993, 6(2): 327-343. 被引量:1
  • 3Glasserman P. Monte Carlo Methods in Financial Engineering [M]. New York: Springer-Verlag, 2004. 被引量:1
  • 4Grant D, Vora G, Weeks D. Path-dependent options: extending the Monte Carlo simulation approach [J]. Management Sci, 1997, 43(11): 1589-1602. 被引量:1
  • 5Avellaneda M, Wu L X. Pricing parisian-style options with a lattice method [J]. Int J Theoretical Appl Finance, 1999, 2(1): 1-16. 被引量:1
  • 6Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach [J]. J Financ Econ, 1979, 7(3): 229-263. 被引量:1
  • 7Rubinstein M. On the relation between binomial and trinomial option pricing models [J]. J Derivatives, 2000, 8(2): 47-50. 被引量:1
  • 8Brennan M J, Schwartz E S. The valuation of American put options [J]. J Finance, 1977, 32(2): 449-462. 被引量:1
  • 9Achdou Y, Pironneau O. Computational Methods for Option Pricing [M]. Philadelphia: SIAM, 2005. 被引量:1
  • 10Forsyth P A, Vetzal K R. Quadratic convergence for valuing American options using a penalty method [J]. SIAM J Sci Comput, 2002, 23(6): 2095-2122. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部