期刊文献+

基于铁磁薄膜可调谐太赫兹微结构的研究 被引量:3

Tunable terahertz structure based on the ferromagnetic film
下载PDF
导出
摘要 通常的太赫兹微结构主要采用Au薄膜制备金属结构,很难利用微结构中Au薄膜性能对太赫兹波进行实时调控。本文设计并制备了基于高磁导率软磁FeNHf薄膜的太赫兹开口三角形结构,通过外磁场调控微结构中软磁薄膜磁化强度方向,系统研究了外磁场调控下微结构中的太赫兹波传输特性和电磁共振模式。软磁Fe NHf薄膜具有磁各向异性的特点,外磁场可以调控磁化强度M方向分别垂直和平行于太赫兹波磁场的方向,采用太赫兹时域光谱系统测试微结构的太赫兹透射特性,通过时域有限差分的方法,分析了基于软磁薄膜微结构的太赫兹场电磁场分布和调制机理。实验结果表明,外磁场可调控开口三角形太赫兹微结构的谐振频率,在1.3THz频段,调谐率约为5.7%,调制深度约为15%。 Au film is mainly used to prepare the metal structure of the terahertz(THz)microstructure.When the metal structure is fixed,it is difficult to control the terahertz wave by using the properties of Au film.In this paper,the terahertz microstructure based on the soft magnetic FeNHf film with the high permeability is designed and fabricated on the high resistivity silicon substrate.The magnetization direction of soft magnetic film is controlled by the external magnetic field H.The THz transmission characteristics and electromagnetic resonance mode of the microstructure under the control of H in split triangular structure are systematically studied.The soft magnetic FeNHf film has the characteristic of magnetic anisotropy.Therefore,the direction of the magnetization M in FeNHf film can be controlled by the external magnetic field H to be perpendicular and parallel to the magnetic field of THz wave,respectively.The THz time domain spectroscopy system is used to test the terahertz transmission characteristic of the microstructure.The finite difference time domain method is used to analyze the THz electromagnetic field distribution and modulation mechanism based on the microstructure of the FeNHf film.The experimental results show that the resonance frequency of the split triangular THz microstructure can be modulated under magnetic field.At the frequency of 1.3 THz,the tunability and modulation depth are about 5.7%and 15%,respectively.
作者 章强 张晓渝 邢园园 赵磊 Zhang Qiang;Zhang Xiaoyu;Xing Yuanyuan;Zhao Lei Jiangsu(Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application,School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China)
出处 《光电工程》 CAS CSCD 北大核心 2020年第6期69-75,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61107093) 苏州市低维光电材料与器件重点实验室(SZS201611) 江苏省十三五重点学科项目(20168765) 江苏省高等学校自然科学研究项目(19KJA140001) 苏州科技大学研究生科研创新计划项目(SKCX18_Y13)。
关键词 太赫兹波 软磁薄膜 磁导率 磁各向异性 terahertz waves soft magnetic film magnetic permeability magnetic anisotropy
  • 相关文献

参考文献3

二级参考文献29

  • 1SILKIN V M, C HULKOV E V. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2007,70( 1 ):1-87. 被引量:1
  • 2BARNES W L, DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature,2003,424(6950) :824-830. 被引量:1
  • 3KIM J T,JU J J ,PARK S,et aL Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides[J]. Optics Express 2008,16(17) : 13133-13138. 被引量:1
  • 4GARCIA M A. Surface plasmons in metallic nanoparticles :Fundamentals and applications[J]. Journal of Physics D Applied Physics, 2011,44 (28) 1569-1576. 被引量:1
  • 5HOMOLA J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews ,2008,108(18) :462-493. 被引量:1
  • 6ANKER J N,HALL W P,LYANDRES O,et al. Biosensing with plasmonic nanosensors[J]. Nature Materials,2008,7(6) :442-453. 被引量:1
  • 7GENET C, EBBESEN T W. Light in tiny holes[J]. Nature, 2007,445 (7123 ) : 39-46. 被引量:1
  • 8RANA F. Graphene terahertz plasmon oscillators[J]. IEEE Transactions on Nanotechnology, 2007,7 ( 1 ) : 91-99. 被引量:1
  • 9JABLAN M, BULJAN H, SOLJACIC M. Plasmonics in graphene at infra-red frequencies[J]. Physical Review B Condensed Matter, 2009,80(24) 308-310. 被引量:1
  • 10VAKIL A,ENGHETA N. Transformation optics using graphene[J]. Science,2011,332(6035) : 1291-1294. 被引量:1

共引文献14

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部