摘要
针对在谐振式无线电能传输(WPT)系统中引入平板磁芯会导致系统线圈电感的变化,进而引起非线性现象这一问题,基于拉塞尔不变原理,提出了一种含平板磁芯的WPT系统自适应控制方法。通过自适应控制器对电动汽车的WPT系统进行控制,可有效减小非线性现象的产生。建立加入平板磁芯的WPT系统模型,利用麦克斯韦(Maxwell)软件求解WPT系统发射和接收线圈的非线性电感模型。基于系统的状态空间方程,分析了系统非线性现象的成因原理,并利用Maxwell软件求解了系统非线性现象时发射线圈的临界点电流。提出了一种适用于含平板磁芯的非线性WPT系统的自适应控制器,并通过MATLAB软件,对加入该控制器前后的非线性WPT系统进行了仿真分析。分析结果表明:在系统中加入控制器,系统谐波消失,由不规则振荡变为周期振荡,同时系统的周期轨道从超过20个控制到1个,验证了文中提出控制器的控制作用。
The inductance of the coil was changed when adding a planar core to the wireless power transmission(WPT)system,which caused the problem of nonlinear phenomena of the system.Based on the principle of Russell invariance,an adaptive control method of WPT system with planar core was proposed,which effectively reduced the non-linear phenomenon.A WPT system model with planar core was built,and the nonlinear inductance model of the transmitting and receiving coils in the WPT system was analyzed by Maxwell software.Based on the state space equation of the WPT system,the cause of the nonlinear phenomenon of the system was analyzed in principle,and the critical point current of the transmitting coil was solved when the non-linear phenomenon happened.An adaptive controller with planar coils for the nonlinear WPT system was presented.The system simulations of the nonlinear WPT system with or without the adaptive controller were carried out by MATLAB.The results show that the harmonic in the WPT system disappears and the WPT system is changed from irregular oscillation into periodic oscillation after adding the adaptive controller.At the same time,the periodic orbit number of the system is reduced from more than 20 to 1,which verifies the function of adaptive controller.
作者
吴雨
周洪
程远锋
朱傲
褚平
邓其军
WU Yu;ZHOU Hong;CHENG Yuanfeng;ZHU Ao;CHU Ping;DEGN Qijun(School of Electrical Engineering&Automation,Wuhan University,Wuhan 430072,China)
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2020年第5期47-53,M0005,共8页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(51507115,51977151)。
关键词
无线电能传输
磁芯
非线性
自适应控制
wireless power transmission
planar core
nonlinear
adaptive control