期刊文献+

凸二次规划SDP松弛解的存在性证明 被引量:1

The Existence Proof of the Solution of SDP Relaxation for Convex Quadratic Program
下载PDF
导出
摘要 针对利用CVX软件求解半定规划问题的有效性依赖于该半定规划问题的原始-对偶性,提出利用半定规划问题的强对偶定理和Gershgorin圆盘定理证明在箱子约束及单位球形约束下的凸二次规划问题的半定规划松弛模型解的存在性。该证明方法为嵌入了SeDuMi和SDPT3这两种内点算法的CVX软件提供了有效求解半定规划松弛模型的理论依据;一旦利用该方法证明了半定规划问题解的存在,必然可利用CVX软件有效求解。 Because the problem of quadratic program has received extensive attention and research in the field of continuous and combinatorial optimization since the semi-definite planning(SDP)relaxation method was proposed,because the effectiveness of the solution of SDP by using CVX software relies on the primal SDP and dual SDP,this paper proposes to use the strong duality theorem and Gershgorin circle theorem to prove the existence of the solution of SDP relaxation model of convex quadratic program under the condition of box constraints and unit spherical constraints.The new proof method of the existence of the solution of the SDP lays the theoretical foundation of the effectiveness for solving the SDP relaxation model by the CVX software with the two kinds of interior point algorithms of SeDuMi and SDPT3.Once this method is used to prove the existence of the solution of SDP,it is necessary to use CVX software to receive effective solution.
作者 张思颖 ZHANG Si-ying(School of Mathematical Science,Chongqing Normal University,Chongqing 401331,China)
出处 《重庆工商大学学报(自然科学版)》 2020年第3期66-69,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 重庆师范大学2019年研究生科研创新项目(YKC19003).
关键词 二次规划 强对偶定理 Gershgorin圆盘定理 quadratic program strong duality theorem Gershgorin circle theorem
  • 相关文献

参考文献2

二级参考文献3

  • 1ZHOU Bin, GAO Li & DAI Yuhong School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China,State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China.Monotone projected gradient methods for large-scale box-constrained quadratic programming[J].Science China Mathematics,2006,49(5):688-702. 被引量:3
  • 2Yinyu Ye. On affine scaling algorithms for nonconvex quadratic programming[J] 1992,Mathematical Programming(1-3):285~300 被引量:1
  • 3Yinyu Ye,Edison Tse. An extension of Karmarkar’s projective algorithm for convex quadratic programming[J] 1989,Mathematical Programming(1-3):157~179 被引量:1

共引文献2

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部