期刊文献+

采用压缩感知与智能优化的大规模WSNs移动稀疏数据收集 被引量:3

Data Collection Method of Large Scale WSNS Mobile Node Based on Compressed Sensing and Intelligent Optimization
下载PDF
导出
摘要 针对大规模无线传感网数据处理网络流量大、任务时延高的缺陷,提出了一种基于自适应块压缩感知与离散弹性碰撞优化算法的移动节点数据收集方案。首先,通过分析网络分块与节点部署之间的关系,提出自适应块压缩感知数据采集策略,实现传感器节点基于自适应网络块压缩感知数据采集;设计移动节点数据采集路径规划策略和多移动节点协同计算机制,通过采用适应度值约束变换处理技术和并行离散弹性碰撞优化算法,达到均衡网络节点能耗和降低数据处理任务时延的目的。最后,仿真结果表明,该数据收集方案能够有效实现大规模传感网数据高效处理,而且降低了网络流量和网络任务时延,更好均衡了网络节点能耗。 Aiming at the defects of large-scale large scale wireless sensor network data processing network traffic and high task latency,a data collection scheme of mobile node based on discrete elastic collision optimization algorithm and adaptive block compression sensing is proposed.Firstly,by analyzing the relationship between the network partitioning and the node deployment,an adaptive block compressed sensing data collection strategy is proposed to realize sensor node based on adaptive network block compressed sensing data collection.Designing mobile node data acquisition path planning strategy and multiple mobile nodes The collaborative computer system adopts the fitness value constraint transformation processing technology and the parallel discrete elastic collision optimization algorithm to achieve the purpose of balancing network node energy consumption and reducing data processing task delay.Finally,the simulation results show that the data collection scheme can effectively realize high-efficiency processing of large-scale sensor network data,and reduce network traffic and network task delay,and better balance network node energy consumption.
作者 刘洲洲 程徐 张杨梅 彭寒 LIU Zhouzhou;CHENG Xu;ZHANG Yangmei;PENG Han(School of Computer Science, Xi′an Aeronautical University, Xi′an 710077, China;School of information and Engineering Sciences, Norwegian University of Science and Technology, Alesund;School of Computer Science, Northwestern Polytechnical University, Xi′an 710072, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第2期333-340,共8页 Journal of Northwestern Polytechnical University
基金 中国博士后科学基金(2018M633573) 陕西省博士后科学基金(2018BSHQYXM2211) 陕西省重点研发计划一般项目(2020GY-084)资助。
关键词 无线传感器网络 压缩感知 离散弹性碰撞优化 数据收集 wireless sensor networks compressive sensing discrete elastic collision optimization data collection
  • 相关文献

参考文献8

二级参考文献63

  • 1王霜,修保新,肖卫东.Web服务器集群的负载均衡算法研究[J].计算机工程与应用,2004,40(25):78-80. 被引量:46
  • 2崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 3孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011. 被引量:19
  • 4李相勇,田澎,孔民.解约束优化问题的新粒子群算法[J].系统管理学报,2007,16(2):120-129. 被引量:14
  • 5GOYAL V K, VETTERLI M, THAO N T. Quantized overcomplete expansions in Rn: Analysis, synthesis and algorithms[J]. IEEE Trans InfTheory,1998,44(1):16-31. 被引量:1
  • 6FEVOlTE C, GODSILL S. Sparse linear regression in unions of bases via Bayesian variable selection[J]. IEEE Signal Process Lett, 2006,13(7):441-444. 被引量:1
  • 7DAVIES M, MITIANOUDIS N. A simple mixture model for sparse overcomplete ICA[A]. Proc lnst Elect Eng, Vis, Image Signal Processing[C].2004.35-43. 被引量:1
  • 8CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans InfTheory, 2006, 52(2):489-509. 被引量:1
  • 9CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SlAM J of Scientific Computing, 1998,20(1): 33-61. 被引量:1
  • 10FIGUEIREDO M, NOWAK R, WRIGHT S. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J of Siaected Topics in Signal Processing, 2007,12(4):586-597. 被引量:1

共引文献97

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部