期刊文献+

WSNs中基于期望网络覆盖和分簇压缩感知的数据收集方案 被引量:4

Data collection scheme based on expected network coverage and cluster compressive sensing for WSNs
原文传递
导出
摘要 为提高无线传感器网络数据收集精确度、降低网络能耗和改善数据包丢失情况下数据收集算法的鲁棒性,提出一种基于期望网络覆盖和分簇压缩感知的数据收集方案.首先设计期望网络覆盖优化算法,给出节点调度策略,实现对"特殊"区域重点观测和降低节点能耗的目的;然后通过分析网络分簇与节点部署之间的关系,设计弱相关性观测矩阵,降低数据包丢失对数据收集的影响;最后引入群居蜘蛛优化算法以提高汇聚节点处CS数据重构精度.仿真结果表明,与其他数据收集算法相比,所提出方案数据重构误差降低了约23.5%,生存期提高了约20.5%. In order to improve the wireless sensor network(WSN) data collection accuracy, reduce the energy consumption of the network and improve the robustness of data collection algorithm under packet loss condition, a data collection scheme based on expected network coverage and cluster compressive sensing is proposed. The data collection scheme is divided into two steps as expected network coverage optimization and cluster CS(compressive sensing) data collection.Firstly, the expected network coverage optimization algorithm is designed, and the node scheduling strategy is given through the quantitative analysis of the node coverage redundancy and the expected value of network coverage in the key observation area, which helps to achieve the purpose of the "special" area observation and reduce energy consumption.Then, by analyzing the relationship between networks clustering and node deployment, the adaptive dynamic network clustering results are provided. On this basis, the weak correlation observation matrix is designed, which can reduce the influence of the packet loss on CS data collection. Finally, the social spider optimization algorithm is introduced to improve the reconstruction accuracy of the CS. The simulation results show that compared with other data collection algorithms, the data reconstruction error is reduced by about 23.5% and the life cycle of network is increased about 20.5%.
出处 《控制与决策》 EI CSCD 北大核心 2018年第3期422-430,共9页 Control and Decision
基金 国家自然科学基金项目(61401499) 陕西省自然科学基金面上项目(2017JM6096) 西安市科技计划项目(2017076CG/RC039(XAHK001))
关键词 无线传感器网络 数据收集 网络覆盖 压缩感知 网络分簇 群居蜘蛛优化算法 wireless sensor networks data collection network coverage compressive sensing network clustering social spider optimization algorithm
  • 相关文献

参考文献8

二级参考文献60

  • 1Rama K. YEDAVALLI,Rohit K. BELAPURKAR.Application of wireless sensor networks to aircraft control and health management systems[J].控制理论与应用(英文版),2011,9(1):28-33. 被引量:15
  • 2崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 3Erik C, Miguel C, Daniel Z, et al. A swarm optimization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(1): 6374- 6384. 被引量:1
  • 4Erik C, Miguel Cienfuegos. A new algorithm inspired in the behavior of social-spider for constrained optimization[J]. Expert Systems with Applications, 2014, 41(1): 412-425. 被引量:1
  • 5Karaboga D. An idea based on bee swarm for numerical optimization[R]. Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005. 被引量:1
  • 6Karaboga D, Basturk B. On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697. 被引量:1
  • 7Lou Y, Li J L. A differential evolution algorithm based on ordering of individuals[C]. The 2nd Int Conf on Industrial Mechatronics and Automation. Wuhan: IEEE Press, 2010: 105-108. 被引量:1
  • 8Saucer T W, Sih V. Optimizing nanophotonic cavity designs with the gravitational search algorithm[J]. Optics Express, 2013, 21(18): 20831-20836. 被引量:1
  • 9Tsai H C, Tyan Y Y, Wu Y W, et al. Gravitational particle swarm[J]. Applied Mathematics and Computation, 2013, 219(17): 9106-9117. 被引量:1
  • 10Sarafrazi S, Nezamabadi-Pour H, Saryazdi S. Disruption: A new operator in gravitational search algorithm[J]. Scientia Iranica, 2011, 18(3): 539-548. 被引量:1

共引文献69

同被引文献28

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部