期刊文献+

基于磁共振影像组学技术对肝癌经肝动脉化疗栓塞术后短期疗效的预后价值分析 被引量:26

Prediction of short-term prognosis of hepatocellular carcinoma after TACE surgery based on MRI texture analysis technology
原文传递
导出
摘要 目的探索基于磁共振(MRI)的影像组学技术构建行经肝动脉化疗栓塞术(TACE)的肝癌患者短期疗效预后预测模型的可行性。方法回顾性分析2016年6月至2018年7月在丽水市中心医院行TACE治疗的肝癌患者123例,其中男90例、女33例,年龄24~83岁,平均(58±10)岁,所有患者均经病理证实为肝细胞癌,并在术前行MRI扫描。同时,所有患者在TACE术后3~4个月进行影像学随访,并根据修正后实体瘤疗效评价标准(mRECIST)进一步分为训练组(85例,其中42例有效,43例无效)和验证组(38例,其中19例有效,19例无效),两组患者组内一般资料比较差异均无统计学意义,具有可比性。随后,利用术前T2WI图像进行影像组学分析,基于R语言筛选特征性纹理参数,构建训练组和验证组的TACE短期疗效预测模型。结果每个患者的T2WI图像分析共得到396个不同的纹理参数,进一步利用LASSO降维及10倍交叉验证筛选得到5个特征性纹理参数,具体为stdDeviation,ClusterProminence_angle135_offset4,Correlation_angle135_offset4,Inertia_angle135_offset4,InverseDifferenceMoment_angle45_offset4,根据以上5个纹理参数及其对应系数值计算得到相应放射值(Radscores),并进一步构建训练组和验证组的预测模型,发现其中训练组模型的受试者工作特征(ROC)曲线下面积为0.812(95%CI:0.722~0.901),敏感度和特异度分别为83.7%和69.0%,验证组模型的ROC曲线下面积为0.801(95%CI:0.654~0.947),敏感度和特异度分别为89.5%和63.2%。结论本研究构建的TACE疗效预测模型具有较高的预测准确度、敏感度和特异度。利用基于MRI的影像组学技术预测肝癌TACE短期疗效是可行的,预测模式稳定且可靠。 Objective To explore the feasibility of short-term efficacy prognosis prediction model for HCC patients undergoing transcatheter arterial chemoembolization(TACE)based on MRI-based radiomics technique.Methods A total of 123 patients with liver cancer who received TACE treatment in Lishui Central Hospital from June 2016 to July 2018 were retrospectively collected,including 90 males and 33 females,with an average age of 24-83(58±10)years.All the patients were pathologically confirmed as hepatocellular carcinoma and underwent MRI scan before surgery.All patients were followed up 3-4 months after TACE,and further divided into training group(n=85,42 of which were effective and 43 cases were ineffective)and the validation group(n=38,19 of which were effective and 19 were ineffective)according to the modified response evaluation criteria in solid tumors(mRECIST).There was no statistical difference in the general information between the two groups of patients,which was comparable.Then,preoperative T2WI images were used for radiomics analysis,texture parameters were screened based on R language,and short-term efficacy prediction model of TACE for training group and verification group was constructed.Results T2WI image analysis of each patient received 396 different texture parameters,and further used Lasso dimensionality reduction and 10 times cross-validation screening to obtain 5 characteristic texture parameters,specifically stdDeviation,ClusterProminence_angle135_offset4,Correlation_angle135_offset4,Inertia_angle135_offset4,InverseDifferenceMoment_angle45_offset4.According to the above five texture parameters and their corresponding coefficient values,the corresponding radiomics scores(Radscore)were calculated,and the prediction models of the training group and the verification group were further constructed.It was found that the area under the ROC curve of the training group was 0.812(95%CI:0.722-0.901),the sensitivity and specificity were 83.7%and 69.0%,respectively.The area under the ROC curve of the validation gro
作者 翁炜 吕秀玲 张倩倩 赵雪妙 陈春妙 孔春丽 卢陈英 陈敏江 纪建松 Weng Wei;LüXiuling;Zhang Qianqian;Zhao Xuemiao;Chen Chunmiao;Kong Chunli;Lu Chenying;Chen Minjiang;Ji Jiansong(Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research of Zhejiang Province,the Fifth Affiliated Hospital of Wenzhou Medical University,Lishui 323000,China;Department of Radiology,Lishui Central Hospital,the Fifth Affiliated Hospital of Wenzhou Medical University,Lishui 323000,China)
出处 《中华医学杂志》 CAS CSCD 北大核心 2020年第11期828-832,共5页 National Medical Journal of China
基金 浙江省分析测试科技计划项目(2018C37039) 浙江省公益技术研究计划(LGF19H180009,LGF18H160035) 丽水市公益性技术项目(2016GYX39)。
关键词 肝肿瘤 磁共振成像 栓塞 治疗性 纹理分析 Liver neoplasms Magnetic resonance imaging Embolization,therapeutic Texture analysis
  • 相关文献

参考文献6

二级参考文献31

  • 1张晓鹏,李洁.直肠癌N分期相关影像学因素CT与病理对照研究[J].中华放射学杂志,2005,39(8):842-846. 被引量:16
  • 2袁礼海,宋建社,薛文通,郑永安.利用灰度和纹理特征的SAR图像分类研究[J].电光与控制,2007,14(4):58-62. 被引量:14
  • 3张祖进,李辉,郭召平,刘大鹏,张红远,张宗礼.PET/CT的技术性能及临床应用[J].医疗卫生装备,2007,28(10):59-60. 被引量:15
  • 4Poretti A, Mended A, Huisman TA. Neuroimaging of pediatric posterior fossa tumors including review of the literature [ J ]. J Magn Reson Imaging,2012,35 ( 1 ) :32-47. 被引量:1
  • 5Fetit AE, Novak J, Peet AC, et al. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain turnouts [ J ]. NMR Biomed, 2015,28 ( 9 ) : 1174- 1184. 被引量:1
  • 6Orphanidou-Vlachou E, Vlaehos N, Davies NP, et al. Texture analysis of T1 - and T2 -weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children[J ]. NMR Biomed, 2014,27 ( 6 ) : 6324539. 被引量:1
  • 7Mtiller KR, Mika S, Ritsch G, et al. An introduction to kernel- based learning algorithms[ J]. IEEE Trans Neural Netw,2001,12 ( 2 ) : 181-20. 被引量:1
  • 8Arai K,Sato N, Aoki J, et al. MR signal of the solid portion of pilocytic astrocytoma on T2-weighted images: is it useful for differentiation from medulloblastoma? [ J]. Neuroradiology,2006, 48(4) :233-237. 被引量:1
  • 9Jaremko JL,Jans LB, Coleman LT, et al. Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors [ J ]. AJNR Am J Neuroradio1,2010,31 (9) : 1613-1616. 被引量:1
  • 10Kassner A, Thornhill RE. Texture analysis : a review of neurologic MR imaging applications [ J ]. AJNR Am J Neuroradiol, 2010,31 ( 5 ) : 809-816. 被引量:1

共引文献163

同被引文献200

引证文献26

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部