期刊文献+

基于影像信息的人工神经网络的脑胶质瘤分级 被引量:1

An artificial neural network model for glioma grading using image information
下载PDF
导出
摘要 目的:探讨利用人工神经网络对脑胶质瘤进行分级的可行性和有效性。方法:回顾性纳入2012至2017年经病理证实的130例脑胶质瘤患者,基于磁共振增强T1加权相二维图像提取的共41个影像学特征。建立人工神经网络并进行特征选择以得到最优化的神经网络模型,随机抽取一半病例的影像学特征数据对神经网络进行训练,并用另一半特征数据对训练完成后的神经网络进行胶质瘤分级效果验证。对神经网络重复进行100次训练和验证,将结果进行平均。结果:经过特征选择后的神经网络模型共选取5个特征作为输入特征,神经网络对脑胶质瘤分级的平均准确率为90.32%,平均敏感度为87.86%,平均特异度为92.49%,受试者操作曲线的曲线下面积为0.9486。结论:人工神经网络作为一种人工智能方法,对脑胶质瘤分级具有较高的准确性,为脑胶质瘤的无创性术前分级提供了可行的辅助手段。 Objective: To explore the feasibility and efficacy of artificial neural network for differentiating high-grade glioma and low-grade glioma using image information. Methods: A total of 130 glioma patients with confirmed pathological diagnosis were selected retrospectively from 2012 to 2017. Forty one imaging features were extracted from each subjects based on 2-dimension magnetic resonance T1 weighted imaging with contrast-enhancement. An artificial neural network model was created and optimized according to the performance of feature selection. The training dataset was randomly selected half of the whole dataset, and the other half dataset was used to verify the performance of the neural network for glioma grading. The trainingverification process was repeated for 100 times and the performance was averaged. Results: A total of 5 imaging features were selected as the ultimate input features for the neural network. The mean accuracy of the neural network for glioma grading was 90.32%, with a mean sensitivity at 87.86% and a mean specificity at 92.49%. The area under the curve of receiver operating characteristic curve was 0.9486. Conclusion: As a technique of artificial intelligence, neural network can reach a relatively high accuracy for the grading of glioma and provide a non-invasive and promising computer-aided diagnostic process for the pre-operative grading of glioma.
作者 毛弈韬 廖伟华 曹冬 赵璐晴 吴训华 孔令煜 周高峰 赵跃龙 王冬翠 MAO Yitao;LIAO Weihua;CAO Dong;ZHAO Luqing;WU Xunhua;KONG Lingyu;ZHOU Gaofeng;ZHAO Yuelong;WANG Dongcui(Department of Radiology,Xiangya Hospital,Central South University,Changsha 410008;Department of Pathology,School of Basic Medical Science,Xiangya School of Medicine,Central South University,Changsha 410013;Department of Pathology,Xiangya Hospital,Central South University,Changsha 410008;School of Computer Science and Engineering,South China University of Technology,Guangzhou 510640;Postdoctoral Research Workstation of Clinical Medicine,Xiangya Hospital,Central South University,Changsha 410008,China)
出处 《中南大学学报(医学版)》 CAS CSCD 北大核心 2018年第12期1315-1322,共8页 Journal of Central South University :Medical Science
基金 国家自然科学基金(81671676 81602575 81701847) 湖南省自然科学基金(2017JJ3430 2017JJ3497 2017JJ2387)~~
关键词 脑胶质瘤 特征选取 人工神经网络 glioma feature selection artificial neural network
  • 相关文献

参考文献3

二级参考文献3

共引文献62

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部