期刊文献+

影像组学在胶质瘤诊断中的研究进展

Research progress of imageomics in the diagnosis of glioma
原文传递
导出
摘要 胶质瘤是最常见的颅内原发性肿瘤,影像学检查对于胶质瘤的诊断具有非常重要的临床意义,例如MRI、CT和PET等。影像组学是人工智能与医学影像大数据结合的新技术,它从海量数据中高效挖掘并整合大量高级影像特征,并建立预测模型。针对影像组学的临床应用,本文分别从胶质瘤分级、预测基因表达、鉴别诊断、预后评估四个方面,阐述影像组学在胶质瘤诊断中的应用。 Glioma is the most common primary intracranial tumor.Imaging examination has important clinical significance for the diagnosis of glioma,such as magnetic resonance imaging(MRI),computed tomography(CT),and positron emission tomography(PET).Imageomics is a new technology combining artificial intelligence and medical imaging big data.It efficiently mines and integrates a large number of advanced imaging features from massive data,and establishes predictive models.For the clinical application of imageomics,this article expounds the application of imageomics in glioma diagnosis from four aspects:glioma grading,prediction of gene expression,differential diagnosis,and prognostic evaluation.
作者 帅明 王娟 张伟 Shuai Ming;Wang Juan;Zhang Wei(Clinical Medical College of Hunan University of Traditional Chinese Medicine,Changsha 410208,China;Department of Radiology,Hunan Provincial Brain Hospital,Changsha 410021,China)
出处 《中国医师杂志》 CAS 2023年第11期1758-1760,F0003,共4页 Journal of Chinese Physician
关键词 神经胶质瘤 磁共振成像 影像组学 Glioma Magnetic resonance imaging Radiomics
  • 相关文献

参考文献11

二级参考文献90

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部