期刊文献+

基于K近邻和粒子群优化的特征选择算法 被引量:6

Feature Selection Algorithm Based on K-nearest Neighbors and Particle Swarm Optimization
下载PDF
导出
摘要 在数据挖掘和机器学习领域,维度灾难会降低学习任务的性能,增加学习任务训练时间,而维度灾难最主要的原因是高维数据中冗余特征的存在。特征选择可以提出数据中的冗余特征,降低数据维度,加快模型训练速度并提高性能。在研究粒子群和K近邻算法之后,将两者结合起来提出一个基于K近邻和粒子群优化的特征选择算法,并在5个UCI数据集上验证算法的有效性。 In the fields of data mining and machine learning,dimensional disasters will reduce the performance of learning tasks and increase the training time of learning tasks.The main reason for dimensional disasters is the existence of redundant features in high-dimensional data.Feature selection can propose redundant features in the data,reduce the data dimension,speed up the model training speed and improve performance.After studying the particle swarm optimization and k-nearest neighbor algorithm,this paper proposes a feature selection algo rithm based on k-nearest neighbor and particle swarm optimization.The validity of the proposed algorithm is verified on five UCI datasets.
作者 钟昌康 ZHONG Chang-kang(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2020年第9期21-24,40,共5页 Modern Computer
关键词 特则选择 粒子群 数据挖掘 K近邻算法 Feature Selection Particle Swarm Data Mining K-Nearest Neighbor Algorithm
  • 相关文献

参考文献1

二级参考文献27

  • 1Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51 被引量:1
  • 2Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86 被引量:1
  • 3van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002 被引量:1
  • 4Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109 被引量:1
  • 5Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121 被引量:1
  • 6Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89 被引量:1
  • 7Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998 被引量:1
  • 8Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949 被引量:1
  • 9Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization [A].Proceedings of the Congress on Evolutionary Computation[C].Seoul,Korea,2001 被引量:1
  • 10Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulations [A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,USA,July 2001 被引量:1

共引文献357

同被引文献53

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部