期刊文献+

粒子群优化算法综述 被引量:358

Survey on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群优化 (PSO)算法是一种新兴的优化技术 ,其思想来源于人工生命和演化计算理论。PSO通过粒子追随自己找到的最好解和整个群的最好解来完成优化。该算法简单易实现 ,可调参数少 ,已得到广泛研究和应用。详细介绍了PSO的基本原理、各种改进技术及其应用等 。 Particle swarm optimization (PSO) is a new optimization technique originating from artificial life and evolutionary computation. The algorithm completes the optimization through following the personal best solution of each particle and the global best value of the whole swarm. PSO can be implemented with ease and few parameters need to be tuned. It has been successfully applied in many areas. In this paper, the basic principles of PSO are introduced at length, and various improvements and applications of PSO are also presented. Finally, some future research directions about PSO are proposed.
作者 杨维 李歧强
出处 《中国工程科学》 2004年第5期87-94,共8页 Strategic Study of CAE
基金 "八六三"高技术资助项目 ( 2 0 0 1AA413 42 0 ) 山东省自然科学基金资助项目 ( 2 0 0 3G0 1)
关键词 群体智能 演化算法 粒子群优化 swarm intelligence evolutionary algorithm particle swarm optimization
  • 相关文献

参考文献27

  • 1Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51 被引量:1
  • 2Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86 被引量:1
  • 3van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002 被引量:1
  • 4Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109 被引量:1
  • 5Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121 被引量:1
  • 6Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89 被引量:1
  • 7徐海,刘石,马勇,蓝鸿翔.基于改进粒子群游优化的模糊逻辑系统自学习算法[J].计算机工程与应用,2000,36(7):62-63. 被引量:18
  • 8Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998 被引量:1
  • 9Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949 被引量:1
  • 10Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization [A].Proceedings of the Congress on Evolutionary Computation[C].Seoul,Korea,2001 被引量:1

二级参考文献6

共引文献325

同被引文献3134

引证文献358

二级引证文献1534

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部