期刊文献+

用于无功电压综合控制的改进粒子群优化算法 被引量:33

APPLICATION OF IMPROVED PARTICLE SWARM OPTIMIZATION TO INTEGRATED CONTROL OF VOLTAGE AND REACTIVE POWER
下载PDF
导出
摘要 介绍了粒子群优化算法(PSO),结合电力系统实际运行情况提出了适用于离散型变量的改进PSO算法,该算法将全局型和局部型算法有效结合起来,将问题分层解决,并引入了变异算子。在IEEE14节点系统和130节点实际系统的仿真计算中,改进PSO算法与其他人工智能算法相比,可在较短的计算时间内取得更好的优化效果。 The necessity of applying the integrated control to reactive power and voltage is briefly described, and a brief introduction to the principles of particle swarm optimization (PSO) is given. According to the practical operation of power systems an improved PSO suitable to discrete variables is put forward, in which the global and partial algorithms are effectively combined, the problem to be solved is divided into sub-problems and the mutation operator is led in. Applying the improved PSO to the calculation of IEEE 14-bus system and practical 130-bus system respectively, the calculation results show that the optimization effect by the improved by PSO is better than by other artificial intelligent algorithms, so the practicability of the improved PSO is proved.
出处 《电网技术》 EI CSCD 北大核心 2004年第13期45-49,共5页 Power System Technology
关键词 电力系统 无功电压综合控制 粒子群优化算法 电能质量 函数优化 Algorithms Artificial intelligence Discrete time control systems Electric potential Electric power systems Integrated control Mathematical operators Optimization
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE International Conference on Neural Network, Perth, Australia, 1995. 被引量:1
  • 2Shi Y, Eberhart R. A modified particle swarm optimizer[C]. IEEE International Conference on Evolutionary Computation, Anchorage,Alaska, USA, 1998. 被引量:1
  • 3Clerc M. The swarm and the queen: toward a deterministic and adaptive particle swarm optimization[C]. Proceedings of the Congress of Evolutionary Computation, Washington DC, 1999. 被引量:1
  • 4Yoshida H, Kawata K, Takayama S et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. IEEE Transactions on Power System,2000,15(4):1232-1239. 被引量:1
  • 5Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm[C]. Proceedings of IEEE International Conference on System, Man, and Cybernetics, Piscataway, 1997. 被引量:1
  • 6Eberhart, Shi Y R. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proceedings of Conference on Evolutionary Computation, Piscataway, 2000. 被引量:1
  • 7李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:302
  • 8盛戈皞,涂光瑜,罗毅.人工智能技术在电力系统无功电压控制中的应用[J].电网技术,2002,26(6):22-27. 被引量:42

二级参考文献18

共引文献342

同被引文献447

引证文献33

二级引证文献590

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部