期刊文献+

一种基于YOLOv3的汽车底部危险目标检测算法 被引量:9

A Vehicle Bottom Dangerous Object Detection Algorithm Based on YOLOv3
下载PDF
导出
摘要 在公共安防领域,汽车底部潜藏的危险品危害性强,检测难度大.当前车底危险品检测主要通过模板匹配等传统目标检测技术进行检测,但存在检测速度慢、检测精度低的问题,为了能够更好地检测出藏匿于车底部位的危险品目标,提出一种改进的YOLOv3目标检测算法.该方法分别从多尺度图像训练、增加Inception-res模块和省去大尺度特征输出分支3个方面对YOLOv3网络进行改进.实验证明:在自制危险品数据集下,采用双数据集多尺度图像训练,网络的m AP值大约提高了0.9%,单张图像检测耗时大致不变;在3个支路分别增加相应Inception-res结构,网络的m AP值大约提高了1.5%,但是单张图像检测耗时却增加了原来的2.6倍;省去大尺度特征输出分支,网络的m AP值降低了0.3%,但是单张图像检测耗时也相应降低25.4%.通过结合上述方法对YOLOv3算法模型进行综合改进,选取双数据集多尺度图像训练的方式,同时省去大尺度特征输出分支,并在其他两支路增加相应Inception-res结构.这样在充分结合Inception-res结构优势的情况下,省去对检测耗时影响较大且对检测结果 m AP值影响较小的大尺度特征输出分支.实验测得改进网络m AP值大约提高2.2%左右,而单张图像检测耗时增加了0.014 s,在可接受范围内.且网络对于小尺寸目标识别效果明显增强,很好地满足了车底复杂背景危险品检测要求. In the field of public security,dangerous objects hidden at the bottom of a vehicle are highly harmful and difficult to detect. In the field of vehicle bottom dangerous object detection,traditional object detection technology,such as template matching,is mainly used.However,the detection speed is slow and the detection accuracy is low.To better detect dangerous objects hidden at the bottom of a vehicle,an improved YOLOv3 detection algorithm is proposed. The method improves three aspects of the YOLOv3 network,i.e.,multi-scale image training,adding the Inception-res module,and eliminating the large-scale feature output branch. The experiment proves that,under the self-made dangerous object dataset,using the double-dataset multi-scale image training,the mAP value of the network increases by approximately 0.9%,but the detection time of a single image remains roughly the same. When adding the corresponding Inception-res structure to the three branches,the network’s mAP value increases by approximately 1.5%,but the detection time of a single image increases by 2.6 times. When eliminating the large-scale feature output branch,the network’s mAP value decreases by 0.3%,but the detection time of a single image decreases by 25.4%. By combining the three aspects,i.e.,adopting the double-dataset multi-scale image training method,eliminating the large-scale feature output branch,and adding the corresponding Inception-res structure to the two other branches,the YOLOv3 algorithm model is comprehensively improved. In this manner,in combination with the advantages of the Inception-res structure,the large-scale feature output branch that has a considerable effect on the detection time and has only a slight influence on the mAP value of the detection result is omitted. The experimental results show that the mAP value of the improved network increases by approximately 2.2%. Meanwhile,the detection time of a single image increases by 0.014 s,which is within the acceptable range. Moreover,the network has significantly enhanced the
作者 高春艳 赵文辉 张明路 孟宪春 Gao Chunyan;Zhao Wenhui;Zhang Minglu;Meng Xianchun(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第4期358-365,共8页 Journal of Tianjin University:Science and Technology
基金 国家重点研发计划资助项目(2017YFC0806503).
关键词 深度学习 卷积神经网络 YOLOv3算法 危险品检测 deep learning convolutional neural network YOLOv3 algorithm dangerous object detection
  • 相关文献

参考文献6

二级参考文献32

  • 1郑翔,黄艺云.经典边缘检测模板的快速算法[J].信号处理,1995,11(4):317-320. 被引量:9
  • 2胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 3廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 4Mavroforakis M E, Theodoridis S. A geometric approach to support vector machine (SVM) Classification[J]. IEEE Trans;. Neural Networks, 2006,17(3) :671 -682. 被引量:1
  • 5Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121 -167. 被引量:1
  • 6Lin C T, Yeh C M, Liang S F, et al. Support-vector-based fuzzy neural network for pattern classification[J]. IEEE Trans. Fuzzy Systems, 2006,14(1) :31 -41. 被引量:1
  • 7Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240. 被引量:1
  • 8Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575. 被引量:1
  • 9Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433. 被引量:1
  • 10Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352. 被引量:1

共引文献288

同被引文献55

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部