期刊文献+

一种基于QPSO优化的流形学习的视频人脸识别算法 被引量:15

Video Face Recognition Method Based on QPSO and Manifold Learning
下载PDF
导出
摘要 视频场景复杂多变,视频采集设备不一致等原因,导致无约束视频中充斥着大量的遮挡和人脸旋转,视频人脸识别方法的准确率不高且性能不稳定.为解决上述问题,本文提出了一种基于QPSO优化的流形学习的视频人脸识别算法.该算法将视频人脸识别视为图像集相似度度量问题,首先帧图像对齐后提取纹理特征并进行融合,再利用带有QPSO优化的黎曼流形大幅度简约维度以获得视频人脸的内在表示,相似度则由凸包距离表示,最后利用SVM分类器获得分类结果.通过在Youtube Face数据库和Honda/UCSD数据库上与当前主流算法进行的对比实验,验证了本文算法的有效性,所提算法识别精度较高,误差较低,并且对光照和表情变化具有较强的鲁棒性. The highly complex video scene and the inconsistent video acquisition equipment have made the unconstrained videos full of occlusion and face rotation,thereby,resulting in both low accuracy and unstable performance of video face recognition.To solve the problem,we propose a novel method by integrating the quantum behaved particle swarm optimization(QPSO)and the Riemannian manifold learning.It outperforms the existing state-of-art methods owing to the followed contributions:1)the algorithm treats each face video as an image set,so that the texture features can be extracted from the aligned frame image;2)the internal representation of video face is obtained by the QPSO Riemannian manifold,enabling the similarity measurement using the distance between convex hulls;3)the classification is conducted using the common-practiced SVM classifier,to some extent,guaranteeing the good prediction performance.The experiments on both the You Tube Face database and the Honda/UCSD database have shown that the proposed algorithm is not only of higher accuracy,but also more robust to the illumination and expression changes,as compared to the other methods.
作者 刘宇琦 赵宏伟 王玉 LIU Yu-Qi;ZHAO Hong-Wei;WANG Yu(College of Computer Science and Technology,Jilin University,Changchun 130012;Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012;Applied Technology College,Jilin University,Changchun 130012)
出处 《自动化学报》 EI CSCD 北大核心 2020年第2期256-263,共8页 Acta Automatica Sinica
基金 国家青年科学基金(61101155) 吉林省优秀青年人才基金项目(20180520020JH) 吉林省科技计划重点科技研发项目(20180201064SF) 国家重点科技研发计划项目(2018YFC0830103)资助~~
关键词 视频人脸识别 量子微粒群优化 黎曼流形学习 视频相似度 Video-based face recognition quantum-behaved particle swarm optimization Riemannian manifold learning video similarity
  • 相关文献

参考文献2

二级参考文献35

  • 1Black M J, et al. Recognizing facial expressions in image sequences using local parameterized models of image motion [J]. International Journal of Computer Vision, 1997, 25 (1): 23-28. 被引量:1
  • 2Gokturk S, et al. A data-driven model for monocular face tracking [C] //Proc of the 7th IEEE Int Conf on Computer Vision. Piseataway, NJ: IEEE, 2001: 701-708. 被引量:1
  • 3Zhang Wei, Wang Qiang, et al. Real time feature based 3D deformable face tracking [C] //Proe of the 10th European Conf on Computer Vision. Piseataway, NJ: IEEE, 2008: 720-732. 被引量:1
  • 4Wang Q, Zhang W, Tang X, et al. Real-time bayesian 3D pose tracking [J]. IEEE Trans on Circuits and Systems for Video Technology, 2006, 16(12): 1533-1541. 被引量:1
  • 5Vacchetti L, Lepetit V, Fua P. Stable real-time 3D tracking using online and offline information [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (10): 1385-1391. 被引量:1
  • 6Wei Kai L, Douglas F, G'erard M. Integrating multiple visual cues for robust real-time 3d face tracking [C] //Proc of the 3rd Int Workshop on Analysis and Modeling of Faces and Gestures. Piscataway, NJ: IEEE, 2007: 109-123. 被引量:1
  • 7Strom J. Model based head tracking and coding [D]. LinkfSping, Sweden: Link6ping University, 2002. 被引量:1
  • 8Cascia M L, et al. Fast, reliable head tracking under varying illumination: An approach based on registration of texture mapped 3D models [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(4): 322-336. 被引量:1
  • 9Ahlberg J. Model-based coding: Extraction, coding, and evaluation of face model parameters [D]. Link6ping, Sweden: Linkoping University, 2002. 被引量:1
  • 10Matthews I, Xiao J, Baker S. 2D vs. 3D deformable face models: Representational power, construction, and real-time fitting [J]. International Journal of Computer Vision, 2007, 75(1) : 93-113. 被引量:1

共引文献9

同被引文献159

引证文献15

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部