期刊文献+

结合深度Q学习和注意模型的视频人脸识别 被引量:2

Video face recognition combined with depth Q learning and attention model
下载PDF
导出
摘要 针对视频人脸识别中存在的动态人脸信息捕捉困难和局部人脸特征提取粗糙的问题,提出了一种基于深度Q学习和注意模型结合的视频人脸识别方法。首先,采用卷积神经网络(Convolutional Neural Network,CNN)训练视频数据可提取多维特征;其次,将视频特征输入注意模型,根据视频数据时间连续性信息得到局部人脸特征、人脸位置和时间记忆单元;最后,采用Q学习迭代计算注意模型的输出,找到含人脸的最优帧序列,并以此计算视频匹配准确度。实验结果表明,该方法有效提高了复杂背景下视频人脸识别的准确性。 Aiming at the difficulty of capturing dynamic face information and the rough extraction of local facial features in video face recognition,a video face recognition method based on deep Q learning and attention model is proposed.Firstly,the Convolutional Neural Network(CNN)training video data can extract multi-dimensional features.Then,the video features can input into the attention model,and the local face features,the face positions and the time memories unit are obtained according to the temporal continuity information of the video data.Then,the Q learning is used to calculate the output of the attention model,and the optimal frame sequence containing the face is found,and calculates the video matching accuracy.The experimental results show that the method effectively improves the accuracy of video face recognition in complex backgrounds.
作者 郑秋文 刘惠义 ZHENG Qiu-wen;LIU Hui-yi(School of Computer and Information,Hohai University,Nanjing 211100,China)
出处 《信息技术》 2019年第4期111-115,120,共6页 Information Technology
关键词 视频人脸识别 深度Q学习 注意力模型 马尔科夫决策过程 video face recognition deep Q learning attention model Markov decision process
  • 相关文献

参考文献7

二级参考文献82

  • 1魏英姿 ,赵明扬 .一种基于强化学习的作业车间动态调度方法[J].自动化学报,2005,31(5):765-771. 被引量:19
  • 2Chowdhury A, Chellappa R. Face reconstruction from monocular video using uncertainty analysis and a generic model.Computer Vision and Image Understanding, 2003, 91 (1) : 188-213 被引量:1
  • 3Choudhury A, Clarkson B, Jebara T, Penland A. Multimodal person recognition using unconstrained audio and video// Proceedings of the Conference on Audio- and Video-based Biometric Person Authentication. Washington D. C, 1999: 176-180 被引量:1
  • 4Zhang Z Y, Liu Z C, Adler D, Cohen M F, Hanson E, Shan Y. Robust and rapid generation of animated faces from video images: A model-based modeling approaeh. International Journal of Computer Vision, 2004, 58(2) : 93-119 被引量:1
  • 5Zhou X, Bhanu B. Integrating face and gait for human recognition at a distance in video. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2007, 37(5):1119-1137 被引量:1
  • 6JingXY, Yao Y F, Zhang D, YangJ Y, Li M. Face and palmprint pixel level fusion and kernel DCV-RBF classifier for small sample biometric recognition. Pattern Recognition, 2007, 40(11): 3209-3324 被引量:1
  • 7Yan Y, Zhang Y J. Multimodal biometrics fusion using correlation filter bank//Proceedings of the 19th IAPR International Conference on Pattern Recognition. Tampa, 2008, MoBTT. 3(1-4) 被引量:1
  • 8McKenna S, Gong S, Raja Y. Face recognition in dynamic scenes//Proceedings of the British Machine Vision Conference. Colchester, 1997: 140-151 被引量:1
  • 9Park U, Jain A K, Ross A. Face recognition in video: Adaptive fusion of multiple matchers//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, 2007:1-8 被引量:1
  • 10Wolf L, Shashua A. Kernel principal angles for classification machines with applications to image sequence interpretation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Madison, 2003:635-642 被引量:1

共引文献2306

同被引文献4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部