期刊文献+

微通道内卫星液滴生成机理与惯性分离机制 被引量:2

Mechanism of generation and inertial separation of satellite droplets in microchannels
下载PDF
导出
摘要 由于非线性动态特征,液液界面破裂过程常伴随卫星液滴的产生,对基于液滴的微流体技术生产液滴的均一性和精准化目标提出了挑战。阐释了微流体界面失稳的复杂动力学特征,剖析了界面失稳的影响因素,并分析了伴随界面失稳而产生的卫星液滴的现象与原理。结合惯性微流体新概念,总结了卫星液滴的惯性分离机制。展望了卫星液滴生成-惯性微流体分离一体化及其并行化数目放大的构想。相关工作的开展,有利于实现微流体技术生产单分散性液滴的精准化目标,为微流体与复杂流体相关的界面动力学行为与调控夯实基础。 Due to the nonlinear dynamic characteristics,the liquid-liquid interface rupture process is often accompanied by the generation of satellite droplets,which poses a challenge to the uniformity and precision of droplets-based microfluidic technology.The complex dynamic characteristics of interfacial instability of microfluidics are explained,and the factors influencing the interfacial instability are analyzed.In addition,the phenomenon and mechanism of satellite droplet formation associated with the interfacial instability are revealed.Based on the new concept of the inertial microfluidics,the mechanism of the separation of satellite droplet by using the inertial microfluidics is highlighted.The integration principle of generation-inertial microfluidics separation for the satellite droplet is proposed,as well as the parallelization criterion for the corresponding numbering-up.The implementation of this topic is beneficial for the realization of the target of precision in producing monodisperse droplets with microfluidics technology,laying a solid foundation for the interfacial dynamics and manipulation of microfluidics and complex fluids.
作者 付涛涛 朱春英 马友光 FU Taotao;ZHU Chunying;MA Youguang(State Key Laboratory of Chemical Engineering,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第2期451-458,共8页 CIESC Journal
基金 国家自然科学基金项目(21878212)
关键词 微流体 微通道 液滴 惯性微流体 多相流 microfluidics microchannel droplet inertial microfluidics multiphase flow
  • 相关文献

参考文献3

二级参考文献59

  • 1Whitesides GM. The origins and the future of microfluidics. Nature, 2006, 442:368-373. 被引量:1
  • 2Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys, 2005, 77:977-1026. 被引量:1
  • 3Mitchell P. Microfluidics-downsizing large-scale biology. Nat Biotechnol, 2001, 19:717-721. 被引量:1
  • 4Daw R, Finkelstein J. Insight: lab chip. Nature, 2006, 442:367-418. 被引量:1
  • 5Figeys D, Pinto D. Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem, 2000, 72:330-335. 被引量:1
  • 6Haeberle S, Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip, 2007, 7:1094-1110. 被引量:1
  • 7Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Rep Prog Phys, 2012, 75:016601. 被引量:1
  • 8Teh SY, Lin R, Hung LH, Lee AP. Droplet microfluidics. Lab Chip, 2008, 8:198-220. 被引量:1
  • 9Belder D. Microfluidics with droplets. Angew Chem lnt Ed, 2005, 44:3521-3522. 被引量:1
  • 10Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA. Controllable monodisperse multiple emulsions. Angew Chem Int Ed, 2007, 46: 8970-8974. 被引量:1

共引文献52

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部