期刊文献+

液滴界面可控导入沉淀剂制备单分散均匀微球 被引量:2

Preparation of monodisper microsphere by controlled droplet solidification
下载PDF
导出
摘要 均一尺寸微米功能材料在诸如高分子化学、医药化工、催化以及高效分离等领域都受到普遍关注。现有常规方法很难满足制备单分散、均一性的微米材料的要求。采用微流控技术,在微流控芯片内先生成液滴,然后再在线固化液滴的方法,制备了各种单分散、尺寸均一的微球。通过液滴界面受控导入沉淀剂到液滴中,当所含溶质为固化慢的硅溶胶时,生成实心微球,制备得到表面积达572 m2·g-1、直径变异系数约为2%的纳米孔道二氧化硅微球;当液滴内含沉淀固化较快的溶质,如Zn、Fe、Cu,则可形成水合氧化物或者混合氧化物空心球微球;当含快沉淀也含慢速固化物质时,如含可溶性Fe的硅溶胶时,通过调控沉淀剂进入液滴的速度,也成功了制备了Fe均匀分散在氧化硅内的混合氧化物微球。 Uniform size micromeres functional material gets a lot of attention in the fields of polymer chemistry, medicine and chemical industry, catalysis and separation. It is incovenient to prepare monodisperse and uniformity micrometer material by current conventional technology. With microfluidic technology, the droplet was generated in the chip and following to solidify the droplet online to prepare various of monodisperse and size uniformity microsphere. Since the droplet was a Si sol of slow-solidified, the nonporous SiO2 microsphere with a BET surface area of 572 m^2·g^-1 and a variance coefficient of microsphere diameters of about 2% were produced by introducing precipitator from the interface of droplet. Because the droplets were a material of fast-precipited, such as Zn, Fe, or Cu ion, a hollow microsphere consisted of hydrate oxide or mixed oxide was produced. As the droplet contains both materials of fast-precipitated and flow-solidified, such as Si sol containing of Fe ion, SiO2 microsphere with a homogeneous dispersed Fe in it was obtained by adjusting the introducing velocity of precipitator into the droplet.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第9期3654-3660,共7页 CIESC Journal
基金 国家自然科学基金项目(21376233 21176233)~~
关键词 介尺度 界面 制备 微流控 液滴 微球 单分散 mesoscale interface preparation microfluidic droplet microsphere monodisperse
  • 相关文献

参考文献20

  • 1Bai C L, Liu M H. From chemistry to nanoscience: not just a matter of size[J]. Angewandte Chemie-International Edition, 2013, 52: 2678-2683. 被引量:1
  • 2Zhao Y C, Chen G W, Ye C B, Yuan Q. Gas-liquid two-phase flow in microchannel at elevated pressure[J]. Chemical Engineering Science, 2013,87: 122-132. 被引量:1
  • 3Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions[J]. Physical Review Letters, 2005, 94: 164501-164504. 被引量:1
  • 4Lee I, Yoo 1', Cheng Z, Jeong H-K. Generation of monodisperse mesoporous silica microspheres with controllable size and surface morphology in a microfluidic device[J]. Advanced Functional Materials, 2008, 18: 4014-4021. 被引量:1
  • 5骆广生,王凯,王佩坚,吕阳成.微反应器内聚合物合成研究进展[J].化工学报,2014,65(7):2563-2573. 被引量:22
  • 6汪伟,谢锐,巨晓洁,褚良银.微流控法制备新型微颗粒功能材料研究新进展[J].化工学报,2014,65(7):2555-2562. 被引量:18
  • 7张艳,雷建都,林海,耿立媛,苏海佳,马光辉,苏志国.利用微流控装置制备微球的研究进展[J].过程工程学报,2009,9(5):1028-1034. 被引量:14
  • 8Li D, Guan Z, Zhang W, Zhou X, Zhang W Y, Zhuang Z, Wang X, Yang C J. Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets[J]. Acs Applied Materials & Interfaces, 2010, 2:2711-2714. 被引量:1
  • 9Yano K, Fukushima Y. Particle size control of mono-dispersed super-microporous silica spheres[J]. Journal of Materials Chemistry, 2003,13:2577-2581. 被引量:1
  • 10Wan J, Stone H A. Coated gas bubbles for the continuous synthesis of hollow inorganic particles[J]. Langmuir, 2012, 28:37-41. 被引量:1

二级参考文献141

  • 1刘志鹏,徐进良.T型微流控芯片中的液滴形成[J].微纳电子技术,2007,44(3):137-141. 被引量:2
  • 2Champion J A, Katare Y K, Mitragotri S. Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers [J]. J. Controlled Release, 2007, 121: 3-9. 被引量:1
  • 3Nie Z H. Developing New Strategies for the Preparation of Micro- and Nano-struetured Polymer Materials [D]. Toronto: University of Toronto, 2008.42--45. 被引量:1
  • 4Xu J H, Li S W, Tan J, et al. Preparation of Highly Monodisperse Droplet in a T-junction Microfluidic Device [J]. AIChE J., 2006, 52(9): 3005-3010. 被引量:1
  • 5Xu J H, Li S W, Tan J, et al. Correlations of Droplet Formation in T-junction Microfluidic Devices: from Squeezing to Dripping [J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. 被引量:1
  • 6Rieux A D, Ragnarsson E G E, Gullberg E, et al. Transport of Nanoparticles across an in vitro Model of the Human Intestinal Follicle Associated Epithelium [J]. J. Pharm. Sci., 2005, 25: 455-465. 被引量:1
  • 7Yang L, Alexandridis P. Physicochemical Aspects of Drug Delivery and Release from Polymer-based Colloids [J]. Curt. Opin. Colloid Interface Sci., 2000, 5: 132-143. 被引量:1
  • 8Freitas S, Merkle H P, Gander B. Microeneapsulation by Solvent Extraction/Evaporation: Reviewing the State of the Art of Microsphere Preparation Process Technology [J]. J. Controlled Release, 2005, 102:313-332. 被引量:1
  • 9Aftabrouchad C, Doelker E. Methodes de Preparation des Microparticles Biodegradable Chargees en Principles Actifs Hydrosolubles [J]. STP Pharm. Sci., 1992, 2: 365-380. 被引量:1
  • 10Chu L Y, Kim J W, Shah R K, et al. Fabrication of Momodisperse Thermosensitive Mierogels and Gel Capsules in Microfluidie Devices [J]. Soft Matter, 2008, 4(12): 2303-2309. 被引量:1

共引文献57

同被引文献53

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部