期刊文献+

基于PCA和ELM的表面肌电信号手腕动作识别研究 被引量:6

Research on the Wrist Movement Recognition for Surface Electromyography Signal Based on PCA and ELM
下载PDF
导出
摘要 为提高手腕动作的识别率,提出了一种将主成分分析(PCA)和极限学习机(ELM)相结合的手腕动作肌电信号识别方法。该方法提取手腕4种动作(内翻、外翻、握拳、展拳)的肌电信号,运用小波变化提取小波特征构造特征矢量,利用PCA算法对特征矢量进行降维,摒弃冗余信息,实现肌电信号特征参数的降维,最后运用ELM对降维后的数据进行识别分类。实验结果表明:将PCA和ELM相结合的方法有着更高的手腕动作识别率,验证了该方法的可行性。 In order to improve the recognition rate of wrist movements,a new method of wrist movement recognition based on principal component analysis(PCA)and extreme learning machine(ELM)is proposed.This method extracts the EMG signals of four wrist movements(wrist down,wrist up,hand grasps,hand extension).Wavelet transform is used to extract wavelet features and construct feature vectors.To realize the dimension reduction of EMG characteristic parameters,the PCA algorithm is used to reduce the dimension of feature vectors and discard the redundant information.Finally,ELM is used to recognize and classify the low-dimensional data.The experimental results show that the combination of PCA and ELM has a higher recognition rate of wrist movements,which verifies the feasibility of the method.
作者 景甜甜 洪洁 JING Tiantian;HONG Jie(School of Mechanical and Electrical Engineering,Anhui Jianzhu University,Hefei 230601,China;Anhui Jianghuai Automobile Group limited company,Hefei 230601,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第12期96-100,共5页 Journal of Chongqing University of Technology:Natural Science
基金 安徽省高校省级自然科学基金研究项目“欠驱动自适应柔性机器人手的研究与设计分析”(KJ2018JD24)
关键词 表面肌电信号 模式识别 主成分分析 极限学习机 surface electromyography pattern recognition principal component analysis extreme learning machine
  • 相关文献

参考文献5

二级参考文献57

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 2续媛君,潘宏侠.设备故障趋势预测的分析与应用[J].振动.测试与诊断,2006,26(4):305-308. 被引量:11
  • 3李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 4高剑,罗志增.支持向量机在肌电信号模式识别中的应用[J].传感技术学报,2007,20(2):366-369. 被引量:11
  • 5Arjunan S P, Kumar D K, Naik G R. A machine learning based method for classification of fractal features of forearm S[MG using Twin Support Vector Machines [A]. 32nd Annual International Conference of the IEEE [MBS [C]. Buenos Aires, 2010:4821 -4824. 被引量:1
  • 6Khezri M, Jahed M. A Neuro-Fuzzy Inference System for s[MG -Based Identification of Hand Motion Commands [J]. IEEE Transactions on Industrial Electronics, 2011, 58 (05): 1952 - 1960. 被引量:1
  • 7Ryait H S, Arora A S, Agarwal R. Interpretations of Wrist/Grip Operations From S[MG Signals at Different Locations on Arm [J]. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4 (02): 101-111. 被引量:1
  • 8Levi J. Englehart H K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric Signal Classification [J]. IEEE Transac tions on Biomedical Engineering, 2007, 54 (05): 847 -853. 被引量:1
  • 9De Luca, Carlp J. Physiology and Mathematics of My E- lectric Signals[J]. IEEE Transactions on Biomedical En- gineering, 1979,26 (6) :313 - 325. 被引量:1
  • 10Hu Y H, He L S. A Methodological Approach to Remove the ECG Noise from the EMG Singals [ C ]//IEEE 2011 lOth International Conference on Electronic Measurement and Instruments. [ S. 1. ] : IEEE,2011:228 - 331. 被引量:1

共引文献49

同被引文献62

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部