期刊文献+

修正评分的协同过滤算法 被引量:4

Modified Score Collaborative Filtering Algorithm
下载PDF
导出
摘要 针对传统协同过滤算法推荐效率低、矩阵稀疏、用户异常值等问题,本文提出修正评分的协同过滤算法.算法先对用户聚类提高最近邻搜索效率,降低搜索时间.与此同时为提高算法推荐精度以及避免用户异常值问题,本文结合置信度提出修正评分代替传统算法中的加权评分衡量推荐结果.经验证,修正评分的协同过滤算法提高了推荐的准确性、有效性. Low efficiency,matrix sparseness,user outliers,etc.for traditional collaborative filtering algorithms,this paper proposes a collaborative filtering algorithm for modified scores.The algorithm first clusters users to improve the efficiency of nearest neighbor search and reduce search time.At the same time,in order to improve the accuracy of algorithm recommendation and avoid the problem of user outliers,this paper proposes a modified score in combination with the confidence score to replace the weighted score in the traditional algorithm to measure the recommendation result.It has been verified that the collaborative filtering algorithm of the revised score improves the accuracy and effectiveness of the recommendation.
作者 贾俊杰 余钦科 JIA Jun-jie;YU Qin-ke(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;Northwest Normal University,Lanzhou 730070,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第12期2526-2530,共5页 Journal of Chinese Computer Systems
基金 甘肃省科技计划项目(145RJDA325)资助 兰州市科技发展计划项目(20141256)资助 甘肃省档案科技项目(2016-09)资助
关键词 用户聚类 置信度 协同过滤 修正评分 user clustering confidence collaborative filtering modified score
  • 相关文献

参考文献7

二级参考文献136

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. 被引量:1
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. 被引量:1

共引文献747

同被引文献37

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部