期刊文献+

遥感影像变化检测用于燃气管道安全隐患排查 被引量:2

Application of Remote Sensing Image Change Detection to Hidden Danger Investigation of Gas Pipeline
下载PDF
导出
摘要 基于深度学习进行遥感影像变化检测,对两幅不同时相的遥感影像进行校正、影像配准、生成变化检测图、隐患设施识别,最终计算燃气管道、输气站与隐患设施的隐患距离,判断隐患水平。分析基于遥感影像变化检测的燃气管道隐患排查流程。在隐患设施中(民房、围墙、铁塔、电杆、铁路、公路、厂矿企业等),除民房、围墙外,其他设施的修建需要有关部门的审批,因此安全隐患主要来自民房、围墙。 Remote sensing image change detection is carried out based on deep learning. The remote sensing images of the two non-simultaneous phases are corrected,the image registration,generation of change detection map,identification of hidden danger facilities are carried out,and the hidden danger distances between the gas pipelines,gas transmission stations and facilities are finally calculated,and hidden danger levels are judged. The hidden danger investigation process of gas pipeline is analyzed based on remote sensing image change detection. In hidden danger facilities( residential houses,fences,iron towers,electric poles,railways,highways,factories and mines and so on),except for residential houses and fences,the construction of other facilities requires the approval of the relevant departments. Therefore,the hidden dangers mainly come from the illegal residential houses and fences.
作者 焦建瑛 吴波 李夏喜 曹印锋 JIAO Jianying;WU Bo;LI Xiaxi;CAO Yinfeng
出处 《煤气与热力》 2019年第12期10025-10028,10045,10046,共6页 Gas & Heat
关键词 燃气管道隐患排查 遥感影像 变化检测 深度学习 hidden danger of gas pipeline remote sensing image change detection deep learning
  • 相关文献

参考文献4

二级参考文献55

  • 1戴芹,马建文,欧阳赟,哈斯巴干.利用贝叶斯网络进行遥感变化检测[J].中国图象图形学报,2005,10(6):705-709. 被引量:12
  • 2Chini M, Pacifici F, Eery W. Comparing Statistical and Neural Network Methods Applied to very High Resolution Satellite Images Showing Changes in Man-made Structures at Rocky Flats [J]. IEEE Trans Geosci Remote Sens, 2008, 146 (6): 1 812- 1 821. 被引量:1
  • 3Francesca B, Bruzzone L. A Detail preserving Scale driven Approach to Change Detection in Mul- titemporal SAR Images[J] IEEE Trans Geosci Re mote Sens, 2005,43(12) :2 963-2 972. 被引量:1
  • 4Moser G, Serpico S B, Vernazza G. Unsupervised Change Detection from Multichannel SAR Image [J]. IEEE Trans Geosci Remote Sens, 2007,4(2) 278 282. 被引量:1
  • 5Song C, Woodcock C E, Seto K C, et al. Classifi cation and Change Detection Using Landsat TM Da- ta: When and How to Correct Atmospheric Effects [J]. Remote Sens Environ, 2001, 75:230-244. 被引量:1
  • 6Li Deren. Change Detection from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2003,28(3):7 12. 被引量:1
  • 7Jackson Q, Landgrebe D. Adaptive Bayesian Con- textual Classification Based on Markov Random Fields[J]. IEEE Trans Geosci Remote Sens, 2002, 40(11):2 454-2 463. 被引量:1
  • 8Brozzone L, Prieto D F. Automatic Analysis of the Difference Image for Unsupervised Change Detec tion[J]. IEEE Trans Geosci Remote Sens, 2000,38 (3):1 171 1 182. 被引量:1
  • 9Tison C, Nicolas J M, Tupin F, et al. A New Sta tistical Model for Markovian Classification of Urban Areas in High-resolution SAR Images [J]. IEEE Trans Geosci Remote Sens, 2004, 42 (10):2 046 2 057. 被引量:1
  • 10Gabriele M, Sebastiano B S. Unsupervised Change Detection from MultichanneI SAR Data by Mark- ovian Data Fusion[J]. IEEE Trans Geosci Remote Sens, 2009, 44(10):2 972 2 982. 被引量:1

共引文献80

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部