期刊文献+

基于高斯混合模型的核相关滤波目标跟踪算法 被引量:4

Kernelized correlation filters target tracking based on Gaussian mixed model
下载PDF
导出
摘要 针对目标跟踪中的尺度变化、旋转、遮挡等问题,提出基于高斯混合模型的核相关滤波目标跟踪算法。利用卷积神经网络提取卷积特征并建立目标外观的高斯混合模型,利用核相关滤波算法检测目标位置,使用多尺度、多形状跟踪方法精确定位目标,在线更新高斯混合模型和核相关滤波器。在公开数据集上进行定量和定性分析,并与多种跟踪算法比较,该算法的距离精度和重叠精度相比核相关滤波算法,分别提高了19%、54%。实验结果表明,采用高斯混合模型和多尺度、多形状跟踪方法,较好解决了外观和尺度变化问题,相比其它算法具有更好的鲁棒性和适应性。 Visual tracking remains a challenging problem due to the appearance changes caused by deformation and abrupt motion.To address this issue,a kernelized correlation target tracking approach based on Gaussian mixed model was proposed.With this method,a CNN was introduced to extract convolution features,and target position was estimated using Gaussian mixed model and kernelized correlation filter.The target accurate scale and shape were estimated using multiple scale and shape tracking approach,and the kernelized correlation filters were updated in real time.Experiments were carried out on public data sets,compared with KCF,the distance accuracy and overlapping precision of the algorithm are improved by 19%and 54%,respectively.The results show that the proposed approach exhibits better performance than other algorithms and maintains its good robustness and adaptability even in complex scene.
作者 欧阳城添 汤懿 OUYANG Cheng-tian;TANG Yi(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《计算机工程与设计》 北大核心 2019年第11期3170-3174,3179,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61561024) 江西省自然科学基金项目(20151BAB207035)
关键词 目标跟踪 卷积特征 相关滤波器 判别模型 高斯混合模型 target tracking convolution feature correlation filter discriminant model Gaussian mixed model
  • 相关文献

参考文献2

二级参考文献19

  • 1ZHANG Kai-hua, ZHANG Lei, YANG Ming-Hsuan.Fast compress ive tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),2014,36(10):2002-2015. 被引量:1
  • 2LU Zhang,Laurens van der Maaten.Structure Preserving Object Tra cking[C].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].2013,8-1845. 被引量:1
  • 3Ulker Y, Gunsel B.Multiple model target tracking with variable rate particle filters[J].Digital Signal Processing,2012,(22):417-429. 被引量:1
  • 4Rui T,Zhang Q,Zhou Y,et al.Object tracking using particl e filter in the wavelet subspace[J].Neurocomputing,2013,(119):125-130. 被引量:1
  • 5Das S, Kale A, Vaswani N.Particle filter with a mode tracker for visual tracking across illumination changes[J].IEEE Trans.Image Process,2012,21(4):2340-2346. 被引量:1
  • 6Comaniciu D, Ramesh V, Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),2003,25(5):564-577. 被引量:1
  • 7Leichter I.Mean shift trackers with cross-bin metrics[J].IEE E Transactions on Pattern Analysis and Machine Intelligence (PAMI),2012,34(4):695-706. 被引量:1
  • 8Li S,Wu O,Zhu C,et al.Visual object tracking using spat ial Context Information and Global tracking skills[J].Computer Vision and Imag e Understanding,2014,(125):1-15. 被引量:1
  • 9Yao A,Lin X,Wang G,et al.A compact associat ion of particle filtering and kernel based object tracking[J].Pattern Recognition,2012,(45):2584-2597. 被引量:1
  • 10Zulfiqar K H,Gu Irene Y H,Andrew G B.Robust visu al object tracking using multi-mode anisotropic mean shift and particle filters [J].IEEE Transactions on Circuits and Systems for Video Techno logy(CSVT),2011,21(1):74-87. 被引量:1

共引文献28

同被引文献43

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部