期刊文献+

高斯混合概率假设密度滤波器在多目标跟踪中的应用 被引量:17

The Gaussian Mixture Probability Hypothesis Density Filter and Its Application to Multi-Target Tracking
下载PDF
导出
摘要 实现了基于随机集和点过程理论在目标数未知或随时间变化的多目标跟踪滤波算法.研究成果包括:(1)分析了基于随机有限集的多目标跟踪模型;(2)分析推导了基于随机集和点过程理论的概率假设密度滤波递推表达式;(3)实现了在线性高斯条件下的概率假设密度滤波的一种解析滤波算法;(4)仿真实验验证了算法的性能,比较了在杂波强度和检测概率变化的情况下和联合概率数据互联算法相关性能;(5)指出了算法的一些不足以及改进的研究方向. A algorithm based on random sets and point process theory is proposed for jointly estimate the time-varying number of targets and their states. The main contributions include. (1) Analyze multi-target tracking model based on random finite sets; (2) The Probability Hypothesis Density recursive formulas are deduced based on random sets and point process theory; (3) A analytic implementation of the Probability Hypothesis Density Filter is proposed under the linear Gaussian assumptions; (4) Two simulation results validate GMPHD performance and then compare GMPHD and JPDA performance under clutter and detection probability change (5) Point out some the algorithm's lack and research direction.
出处 《计算机学报》 EI CSCD 北大核心 2012年第2期397-404,共8页 Chinese Journal of Computers
基金 国家"八六三"高技术研究发展计划项目基金(2006AA12A104) 国家自然科学基金(60705005)资助~~
关键词 高斯混合概率假设密度(PHD)滤波器 概率假设密度滤波器 随机集 多目标跟踪 联合概率数据互联 JPDA GMPHD probability hypothesis density filter random sets multi-target tracking
  • 相关文献

参考文献15

  • 1Mahler R. Multitarget Bayes filtering via first-order multi- target moments. IEEE Transactions on Aerospace and Elec- tronic Systems, 2003, 39(4): 1152-1178. 被引量:1
  • 2DMey D J, Vere-Jones D. An Introduction to the Theory of Point Processes. New York: Springer, 1988. 被引量:1
  • 3Goodman I, Mahler R, Nguyen H. Mathematics of Data Fu- sion. Boston: Kluwer Academic Publishers, 1997. 被引量:1
  • 4Vo B, Ma W K. A closed-form solution to the probability hypothesis density filter//Proceedings of the International Conference on Information Fusion. Philadelphia, PA: 2005. 被引量:1
  • 5Mahler R. A theory of PHD filters of higher order in target number//Proceedings of the SPIE Defense Security Symposi- um on Signal Process, Sensor Fusion, Target Recognit. XV, 2006, 6235: 62350K. 被引量:1
  • 6Johansen A, Singh S, Doucet A, Vo B. Convergence of the SMC implementation of the PHD filter. Methodology and Computing in Applied Probability, 2006, 8(2): 265 -291. 被引量:1
  • 7Vo Ba-Tuong, Vo Ba-Ngu, Cantoni Antonio. Analytic im- plernentations of the cardinalized probability hypothesis den- sity filter. IEEE Transactions on Signal Processing, 2007, 55(7) : 3553-3567. 被引量:1
  • 8Vihola M. Random sets for multitarget tracking and data association. Department Infornational Technology, Institute of Mathematics, Tampere University of Technology, Finland, 2004. 被引量:1
  • 9Lin L, Bar-Shalom Y, Kirubarajan T. Track labeling and PHD filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 778-795. 被引量:1
  • 10Mahler Ronald P S. "Statistics 101" for multisensor, multi target data fusion. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1): 53-64. 被引量:1

同被引文献128

引证文献17

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部