期刊文献+

基于星凸RHM的扩展目标SMC-PHD滤波 被引量:5

SMC-PHD filter for extended target tracking based on star-convex random hypersurface models
下载PDF
导出
摘要 扩展目标跟踪与传统目标跟踪不同,不仅需要对目标的运动状态进行跟踪,同时对于目标的外形特征也不能忽略。针对扩展目标跟踪过程中存在的外形拟合和非线性的问题,提出一种基于星凸随机超曲面模型(RHM)的扩展目标序贯蒙特卡洛概率假设密度滤波(SMC-PHD)算法。该算法运用星凸RHM对扩展目标量测源建模,在SMC-PHD的框架下,推导出非线性滤波算法的量测似然表达式和更新方程,实现扩展目标跟踪。仿真结果证明,所提算法的跟踪性能较其他滤波对于目标扩散程度和质心估计均有提高。 Extended object tracking is different from the traditional object tracking technology, it does not ignore the target’s shape.Extended object tracking simultaneously had both the centroid’s kinematical state and the shape of target, this paper proposed a sequential Monte Carlo probability hypothesis density (SMC-PHD) filter based on star-convex random hypersurface models(RHM) for target’s shape and nonlinear extended target tracking. The proposed algorithm described the extension of measurements by the star-convex random hypersurface model, and then it was embedded into the SMC-PHD, derived nonlinear estimator’s likelihood function and measurement update to track extended target. Simulation results show that the proposed method outperforms the other PHD filter in extension estimation as well as centroid state estimation.
出处 《计算机应用研究》 CSCD 北大核心 2017年第7期2144-2147,共4页 Application Research of Computers
基金 陕西省自然科学基金资助项目(2015JM6332)
关键词 星凸形 随机超曲面模型 扩展目标 序贯蒙特卡洛概率假设密度 star-convex random hypersurface models extended target sequential Monte Carlo probability hypothesis density
  • 相关文献

参考文献4

二级参考文献45

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2MAHLER R. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aero- space and Electronic Systems, 2003,39 (4) : 1152-1178. 被引量:1
  • 3VO B T, VO B N, CANTONI A. The cardinalized probability hypothesis density filter for linear gaussian multi-target models [J]. IEEE Transactions on Aero- space and Electronic Systems, 2005, 41 (4) : 1224- 1245. 被引量:1
  • 4VO B N, MA W K. The gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Processing, 2006,54 (11) :. 4091-4104. 被引量:1
  • 5VO B N, SUMEETPAL S, DOUCET A. Sequential Monte carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aero- space and Electronic Systems, 2005, 41 (4): 1224- 1245. 被引量:1
  • 6MAHLER R. PHD filters for nonstandard targets, I: extended targets[C]//Seattle: Proceedings of the In- ternational Conference on Information Fusion, 2009: 915-921. 被引量:1
  • 7ORGUNER U, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized probabili- ty hypothesis density filter[C]//Chicago: Proceedings of the 14th International Conference on Information Fusion,2011 : 1-8. 被引量:1
  • 8GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a gaussian mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012,48 (4) : 3268-3286. 被引量:1
  • 9JARVIS R A, PATRICK E A. Clustering using a similarity measure based on shared nearest neighbors [J]. IEEE Transactions on Computers, 1973, C-22 (11) : 1025-1034. 被引量:1
  • 10RISTIC B, VO B N,CLARK D, et al. A metric for performance evaluation of multi-target tracking algo- rithms[J]. IEEE Transactions on Signal Process, 2011, 59(7) :3452-3457. 被引量:1

共引文献32

同被引文献35

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部