摘要
热丝组件是行波管内部温度最高的部位,其结构的抗振性能直接影响整管的抗振可靠性。用热力耦合仿真技术获得了随机振动PSD谱1σ、2σ、3σ概率分布下热丝断裂部位的应力场分布及最大应力值,并以试验获得的热丝高温抗拉强度作为热丝断裂判据,评价了25℃和85℃环境温度工作时原热丝结构能承受抗振量级,结果表明:1σ概率分布下,原热丝结构在25℃和85℃环境温度下工作时分别能承受加速度均方根为19.22g和18.67g的随机振动量级;3σ概率分布下,能承受16.06g和15.08g的随机振动量级。并评价了不同结构尺寸的热丝结构的抗振能力,研究发现热丝所能承受的随机振动抗振量级随热丝引出端长度的增加而增大,随热丝直径的增大而增大。研究成果为热丝结构优化设计提供理论依据。
The hot wire assembly is the highest temperature inside the traveling wave tube,and its anti-vibration performance directly affects the vibration resistance of the tube.The stress field distribution and the maximum stress value of the hot filament are obtained by the thermo-mechanical coupling simulation technique.The high temperature tensile strength of the hot filament obtained by the test is obtained as the fault of the hot filament.The results show that under the 1σprobability distribution,the original hot filament structure can withstand the acceleration is 19.22g and 18.67g random vibration order when operating at 25℃and 85℃ambient temperature;under the 3σprobability distribution,it can withstand 16.06g and 15.08g random vibration order.And the anti-vibration ability of the hot-wire structure with different structural dimensions was evaluated.It was found that the vibration level of the random vibration increases with the length of the filament leads,and increases with the diameter of the filament.The research results provide the theoretical basis for the optimal design of the hot wire structure.
作者
宋芳芳
恩云飞
李斌
苏伟
SONG Fang-fang;EN Yun-fei;LI Bin;SU Wei(School of Electron and Information,South China University of Technology,Guangdong Guangzhou510640,China;Sci-ence and Technology on Reliability Physics and Application of Electronic Component Laboratory,China Electronic Produce Reliability and Environmental Testing Research Institute,Guangdong Guangzhou510610,China)
出处
《机械设计与制造》
北大核心
2019年第11期216-220,共5页
Machinery Design & Manufacture
基金
国家自然科学基金资助项目(51505089)
广东省自然科学基金资助项目(2016A030313672)
关键词
行波管
热丝组件
随机振动
热力耦合仿真
抗振量级
Traveling Wave Tube
Hot Wire Assembly
Random Vibration
Thermo-Mechanical Coupling Simulation
Anti-Vibration Level