期刊文献+

融合空间约束和梯度结构信息的视频篡改检测算法

Video tampering detection algorithm based on spatial constraint and gradient structure information
下载PDF
导出
摘要 相邻帧间相似性原理的传统视频被动取证方法会对画面运动剧烈的视频发生大量误检测,针对这个问题,提出了一种融合空间约束和梯度结构信息的视频篡改检测方法。首先,利用空间约束准则,提取低运动区域和高纹理区域,并将两个区域进行融合,获取顽健的量化相关性丰富区域用于提取视频最优相似性特征;然后,改进原有特征的提取和描述方法,运用符合人类视觉系统特性的梯度结构相似性GSSIM来计算空间约束相关性值,最后,利用切比雪夫不等式对篡改点进行定位。实验证明,针对画面运动剧烈的视频,所提算法误检率更低,精确度更高。 The traditional video passive forensics method using only the principle of similarity between adjacent frames will cause a lot of false detection for the video with severe motion.Aiming at this problem,a video tamper detection method combining spatial constraints and gradient structure information was proposed.Firstly,the low motion region and the high texture region were extracted by using spatial constraint criteria.The two regions were merged to obtain the robust quantitative correlation rich regions for extracting video optimal similarity features.Then improving the extraction and description methods of the original features,and using the similarity of the gradient structure in accordance with the characteristics of the human visual system to calculate the spatial constraint correlation value.Finally,the tampering points were located by the Chebyshev inequality.Experiments show that the proposed algorithm has lower false detection rate and higher accuracy.
作者 普菡 黄添强 翁彬 肖辉 黄维 PU Han;HUANG Tianqiang;WENG Bin;XIAO Hui;HUANG Wei(Mathematics and Informatics,Fujian Normal University,Fuzhou 350007,China;Fujian Provincial Engineering Research Center of Big Data Analysis and Application,Fuzhou 350007,China;Digital Fujian Big Data Security Technology Institute,Fuzhou 350007,China)
出处 《网络与信息安全学报》 2019年第5期64-79,共16页 Chinese Journal of Network and Information Security
基金 国家重点研发计划专项基金资助项目(No.2018YFC1505805) 应用数学福建省高校重点实验室基金资助项目(No.SX201803)~~
关键词 空间约束 量化相关性丰富区域 梯度结构相似性 画面运动剧烈的视频 spatial constraints the quantitative correlation rich regions GSSIM(gradient structure similarity) videos with severe motion
  • 相关文献

参考文献6

二级参考文献50

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2CastlemanKR.数字图像处理[M].北京:电子工业出版社,2001.. 被引量:5
  • 3秦运龙 孙广玲 张新鹏.利用运动矢量进行视频篡改检测.计算机研究与发展,2009,46:227-233. 被引量:12
  • 4Wang W, Farid H. Exposing digital forgeries in video by detecting duplication. Proceedings of the 9^th Workshop on Multimedia and Security. New York,USA, 2007: 35-42. 被引量:1
  • 5Wang W, Farid H. Exposing digital forgeries in interlaced and deinterlaced video. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 438-449. 被引量:1
  • 6Wang W, Farid H. Detecting re-projected video. Information Hiding:The 10^th International Workshop, IH2008. Santa Barbara, CA, 2008, 72-86. 被引量:1
  • 7Wang W H, Farid H. Exposing digital forgeries in video by detecting double MPEG compression. Proceedings of the Multimedia and Securit3/ Workshop. Geneva, Switzerland. ACM, 2006: 37-47. 被引量:1
  • 8Wang W H, Farid H. Exposing digital forgeries in video by detecting double quantization. ACM Multimedia and Security Workshop. Princeton, 2009,39-48. 被引量:1
  • 9Shih T, Tsai J, Tang N, etal. Video forgery. Future Generation Information Technology, 2009, 7-11. 被引量:1
  • 10Shih T, Tsai J, Tang N, et al. Video forgery and special effect production. Visual Informatits: Bridging Research and Practice, 2009, 35- 37. 被引量:1

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部