摘要
研究了一类具有时滞与Lévy跳的随机捕食者-食饵模型.首先利用Lyapunov方法和It o ^公式,给出了模型全局正解的存在唯一性.然后根据切比雪夫不等式和指数鞅不等式以及Borel-Cantelli引理等,得到了解的随机最终有界性以及灭绝性.最后,运用数值模拟验证了理论结果.
This research focuses on a class of the stochastic predator-prey model with delay and Lévy jump. Firstly, the Lyapunov method and Ito^formula are used to give the existence and uniqueness of the global positive solution of this model. Then according to Chebyshev’s inequality, exponential martingale inequality and Borel-Cantelli lemma, etc., the stochastic ultimate boundedness and extinction are obtained. Finally, the theoretical results are verified by numerical simulations.
作者
史丽丽
刘桂荣
SHI Li-li;LIU Gui-rong(School of Mathematical Sciences, Shanxi University,Taiyuan 030006,China)
出处
《云南民族大学学报(自然科学版)》
CAS
2019年第5期470-474,490,共6页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(11471197)