期刊文献+

基于改进蜂群算法的焊接机器人路径规划方法研究 被引量:14

Research on Path Planning Method for Welding Robot Based on Improved Bee Colony Algorithm
下载PDF
导出
摘要 针对焊接机器人的运动特点及焊接工作过程中焊枪的避障问题,提出基于改进人工蜂群算法的机器人避障焊接路径规划策略。首先针对传统人工蜂群算法存在的问题,将Lévy(莱维)分布引入到人工蜂群算法侦查蜂寻找新蜜源的过程中,代替其原有0~1之间的随机分布过程,形成了基于Lévy飞行的改进型人工蜂群算法,然后将其应用到焊接机器人的路径规划问题中,并进行了仿真实验。结果表明:改进后的方法能够得到最优的焊接避障路径,且寻优速度快、过程稳定。该方法可用于解决焊接机器人避障路径规划问题。 Aiming at the motion characteristics of welding robot and the obstacle avoidance problem of welding gun in the working process of welding robot, a path planning strategy for robot obstacle avoidance welding based on improved artificial bee colony algorithm is proposed. Firstly, aiming at the problems of traditional artificial bee colony algorithm, Lévy distribution was introduced into the process of detecting bees to find new honey source, instead of the random distribution process between 0 and 1. An improved artificial bee colony algorithm based on Lévy flight was developed and applied to the path planning problem of welding robot. Simulation experiments were carried out. The results show that the improved method can obtain the optimal obstacle avoidance path of welding robot, and the optimization speed is fast and the process is stable, which can be used to solve the problem of obstacle avoidance path planning of welding robot.
作者 姚江云 吴方圆 YAO Jiangyun;WU Fangyuan(Lushan College, Guangxi University of Science and Technology, Liuzhou Guangxi 545616, China;Guangxi Aurora Intellectual Property Service Co., Ltd., Nanning Guangxi 530000, China)
出处 《机床与液压》 北大核心 2019年第15期49-52,76,共5页 Machine Tool & Hydraulics
基金 2017年度广西高校中青年教师基础能力提升项目(2017KY1389)
关键词 焊接机器人 路径规划 Lévy飞行 蜂群算法 最优解 避障 Welding robot Path planning Lévy flight Artificial bee colony algorithm Optimum solution Obstacle avoidance
  • 相关文献

参考文献8

二级参考文献76

  • 1马云红,周德云.一种无人机路径规划的混沌遗传算法[J].西北工业大学学报,2006,24(4):468-471. 被引量:15
  • 2Craig J J. Introduction to robotics- mechanics and control ( Third Edi- tion). New Jersey: Pearson Education, Inc. , 2005. 被引量:1
  • 3Taylor R. Planning and execution of straight line manipulator trajecto- ries. Robot Motion, Editors. M1T Press, Cambridge, MA, 1983: 424-436. 被引量:1
  • 4欧阳沽,聂玉峰,车刚名.王振海编著.数值分析.北京:高等教育出版社,2009:74-75. 被引量:2
  • 5Corke P I. Robotics toolbox for matlab releaseS, http ://www. peter- corke, com, December 2008. 被引量:1
  • 6Holland J H. Adaptation in Natural and Artificial Systems. Cam- bridge, USA: MIT Presst 1992. 被引量:1
  • 7Kennedy J, Eberhart R. Particle Swarm Optimization//Pmc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995, IV: 1942-1948. 被引量:1
  • 8Yang Xinshe. Nature-lnspired Metaheuristic Algorithms. Frome, UK: Luniver Press, 2011. 被引量:1
  • 9Yang Xinshe. Multiobjective Firefly Algorithm for Continuous Opti- mization. Engineering with Computers, 2013, 29(2) : 175-184. 被引量:1
  • 10Zhou Yongquan, Liu Jiakun, Zhao Guangwei. Leader Glowworm Swarm Optimization Algorithm for Solving Nonlinear Equations Sys- tems. Electrical Review, 2012, 88(lb) : 101-106. 被引量:1

共引文献319

同被引文献146

引证文献14

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部