期刊文献+

基于特征点和区域生长的目标图像分割方法 被引量:12

Target Image Segmentation Method Based on Feature Selection and Region Growing
下载PDF
导出
摘要 成像探测的运动目标图像中背景复杂并且含有大量的噪声,针对传统的目标的检测和分割方法精确定位困难、且不能完整分割等问题,提出基于特征点和区域生长的运动目标图像分割方法。通过相邻帧图像的绝对值差分图像得到大概的运动区域,利用基于LK光流的角点检测方法提取差值图像中的特征点,采用非最大值抑制对特征点的优劣性进行评估,对好的特征点进行区域生长,最终达到运动目标的分割目的。仿真结果表明:该方法能够对复杂图像序列中的运动目标进行精确定位,得到较好的目标分割结果,并且计算量小,具有较高的鲁棒性。 According to the problems that precise locattion was hard and perfect segmentation was not available for moving target in imaging detection under complex background and a large amount of noises,a moving target detection and segmentaion method based on image feature selection and region growing method was proposed.The probable moving region was obtained through the absolute difference image,the feature points were detected in difference image by using LK optical flow based corner detection method.The advantages evaluation was performed for the feature points,which would be used for region growing,that would result in the movingtarget segmentation.Simulation results showed that the method for moving target detection under complex background was of precise location,perfect segmentation,low computational complexity and strong robusticity.
出处 《探测与控制学报》 CSCD 北大核心 2012年第1期6-9,14,共5页 Journal of Detection & Control
关键词 成像探测 目标分割 光流法 区域生长 鲁棒性 imaging detection target segmentation optical flow region growing robusticity
  • 相关文献

参考文献4

二级参考文献32

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2李宏,杨廷梧,任朴舟,李朝晖.基于光流场技术的复杂背景下运动目标跟踪[J].光电工程,2006,33(10):13-17. 被引量:16
  • 3Gavrila D M. The visual analysis of human movement: A survey[J]. Computer Vision and Image Understanding, 1999, 73(1 ) : 82-98. 被引量:1
  • 4Fejes S, Davis L S. What can projections of flow fields tell us about the visual motion [A]. In: Proceeding of International Conference on Computer Vision[ C], Bombay, India,1998 : 979-986 被引量:1
  • 5Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Interface,2000, 22(3) : 266-280. 被引量:1
  • 6Cucchiara R, Piccardi M, Prati A. Detecting moving objects,ghosts, and shadows in video streams [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10) : 1337-1342. 被引量:1
  • 7Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance[ A]. In: Proceedings of the Seventh International Conference on Computer Vision [ C ], Corfu, Greece, 1999: 255-261. 被引量:1
  • 8Wren C, Azarhayejani A, Darrell T, Pentland A P. Pfinder: realtime tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780-785. 被引量:1
  • 9Stauffer C, Grimson W E L. Adaptive background mixture models for real-time traeking[A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ], Fort Collins, Colorado, USA, 1999: 246-252. 被引量:1
  • 10Elgammal A, Hanvood D, Davis S. Nonparametric model for background subtraction [A]. In: Proceedings of European Conference on Computer Vision [ C ]. Dublin, Ireland, 2000 : 751-767. 被引量:1

共引文献106

同被引文献111

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部