期刊文献+

基于深度自编码器的大型龙门加工中心热误差建模方法 被引量:5

Thermal Error Modeling Method Based on Stacked Auto-encoder for Large Gantry Five-sided Machining Center
下载PDF
导出
摘要 为提高热误差模型的预测能力,提出一种基于深度学习方法的数控机床热误差建模方法。利用模糊聚类法和灰色关联度分析法选取温度变量的热敏感点,采用深度自编码器(Stacked automatic encoder,SAE)网络从选出的输入样本中提取特征,构建特征集,然后使用遗传优化算法(Genetic optimization algorithm,GA)对BP神经网络参数进行寻优,从而提出一种基于SAE-GA-BP的数控机床热误差建模方法。以某大型龙门五面加工中心为实验对象,研究并选择了加工中心加工过程中的主要误差源--主轴热误差进行补偿,对主轴热误差深度学习模型和多元回归模型进行了分析对比。结果表明,在预测精度方面所提出的建模方法优于传统多元回归模型,从而验证了该建模方法的可行性和有效性。 A thermal error modeling method of NC machine tools based on deep learning method was proposed in order to improve the prediction ability of thermal error model. Fuzzy clustering method and grey relationship analysis method were used to select the sensitive points of temperature variables and the stacked automatic encoder (SAE) network was used to extract the features of the temperature variables from the selected input samples to construct the feature sets. Then, genetic optimization algorithm (GA) was used to optimize BP neural network parameters so as to propose a thermal error modeling method based on SAE GA BP neural network for NC machine tools. Taking a large gantry five-sided machining center as the experimental object, the spindle thermal error of the large gantry five-sided machining center was studied and selected as the main error source to achieve compensation in the machining process. The deep learning model of main shaft thermal error was compared with the multiple regression model. The experimental results showed that the proposed modeling method was better than the traditional multiple regression model in prediction accuracy of the thermal error of NC machine tools, which verified the feasibility and effectiveness of the proposed thermal error modeling method.
作者 杜柳青 王承辉 余永维 徐李 DU Liuqing;WANG Chenghui;YU Yongwei;XU Li(College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2019年第10期395-400,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金面上项目(51775074) 重庆市重点产业共性关键技术创新重点研发项目(cstc2017zdcy-zdyfX0066、cstc2017zdcy-zdyfX0073) 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0352)
关键词 大型龙门五面加工中心 热误差建模 特征提取 深度学习 large gantry five-sided machining center thermal error modeling feature extraction deep learning
  • 相关文献

参考文献9

二级参考文献50

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22. 被引量:93
  • 3RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-A review Part II:thermal errors [J]. International Journal of Machine Tools and Manufacture, 2000,40(9): 1257-1284. 被引量:1
  • 4CHEN Jeng-shyong. Computer-aided accuracy enhancement for multi-axis CNC machine tool [J]. International Journal of Machine Tools and Manufacture,1995,35(4): 593-605. 被引量:1
  • 5TAKAGI Tomohiro,SUGENO Michio. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems,Man and Cybernetics , 1985,15(1):116-132. 被引量:1
  • 6Wang Xiushan,Yang Jianguo. Synthesis Error Modeling and Thermal Error Compensation of Five--axis Machining Center[J]. Mater. Sci. Forum, 2006, 532-533:49-52. 被引量:1
  • 7Okafor A C, Ertekin Y M. Derivation of Machine Tool Error Models and Error Compensation Procedure for Three Axes Vertical Machining Center Using Rigid Body Kinematics[J]. International Journal of Machine Tools & Manufacture,2000,40(8) : 1199-1213. 被引量:1
  • 8Ni J. CNC Machine Accuracy Enhancement Through Real--Time Error Compensation [J]. Journal of Manufacturing Science and Engineering, 1997, 119 (4) :717-725. 被引量:1
  • 9Lei W T, Hsu Y Y. Accuracy Test of Five--axis CNC Machine Tool with 3D Probe--ball. Part Ⅰ:Design and Modeling[J]. International Journal of Machine Tools & Manufacture, 2002, 42 (10): 1153- 1162. 被引量:1
  • 10Barakat N A, Elbestawi M A, Spence A D. Kinematic and Geometric Error Compensation of a Coordinate Measuring Machine[J]. International Journal of Machine Tools & Manufacturem, 2000,40 (6) : 833- 850. 被引量:1

共引文献140

同被引文献61

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部