期刊文献+

土地利用/覆被深度学习遥感分类研究综述 被引量:36

Review for Deep Learning in Land Use and Land Cover Remote Sensing Classification
下载PDF
导出
摘要 基于遥感分类实现高精度的土地利用和土地覆被制图是研究热点问题。近年来,以卷积神经网络为代表的深度学习在计算机视觉领域取得了长足发展,同时也被引入到土地利用/覆被遥感制图领域。相比于经典机器学习,深度学习的优势表现为能够自适应提取与分类任务最相关的特征,其缺陷表现为分类精度的提高依赖于海量标签样本。基于深度学习在土地利用/覆被分类中日益增多的研究成果,本文从样本、模型、算法3个角度对其研究进展进行综述。在样本方面,归纳总结了常用的土地利用/覆被样本集,并分析了上述样本集的学术影响力;在模型方面,综述了土地利用/覆被分类中常用的深度学习模型,包括卷积神经网络、循环神经网络、全卷积神经网络等的最新研究成果;在算法方面,综述了样本稀疏条件下的土地利用/覆被分类算法的最新研究进展,具体包括主动学习、半监督学习、弱监督学习、自监督学习、迁移学习等。最后从样本、模型、算法3个角度对未来研究方向进行展望,通过构建大规模遥感样本数据集、持续优化深度学习模型结构、提升样本稀疏条件下深度学习模型的时空泛化能力等研究,可以进一步改善土地利用/覆被分类效果和精度。 Accurate land use and land cover(LULC)mapping based on remote sensing image classification has been a hot topic nowadays.Recently,deep learning,especially convolutional neural network,has achieved promising results in computer vision tasks,which has also been introduced into the field of LULC mapping.Compared with classic machine learning methods,deep learning is capable of extracting the most representative features from remote sensing images,however,its performance is depended on massive labeled data.Considering deep learning has been widely used in LULC classification,the objective was to provide a comprehensive review of deep learning from the following perspectives as sample dataset,model structure and training strategy.Specifically,from the perspective of samples,the most commonly used LULC sample dataset was summarized and their academic influence was analyzed.From the perspective of models,the latest research of deep learning models were reviewed,including convolutional neural network,recurrent neural network,fully convolutional network.From the perspective of training strategies,various training methods that could tackle the data-hunger issue of deep learning were summarized,including active learning,semi-supervised learning,weakly-supervised learning,self-supervised learning,transfer learning.Finally,an outlook of deep learning in LULC mapping was provided,which was still from three perspectives of sample dataset,model structure and training strategy.Through the construction of large-scale LULC sample dataset,improvement of deep learning model structure and the increase of spatial-temporal generalization capability under limited samples,LULC remote sensing classification could yield a better performance and accuracy in future study.
作者 冯权泷 牛博文 朱德海 陈泊安 张超 杨建宇 FENG Quanlong;NIU Bowen;ZHU Dehai;CHEN Boan;ZHANG Chao;YANG Jianyu(College of Land Science and Technology,China Agricultural University,Beijing 100193,China;Key Laboratory for Agricultural Land Quality Monitoring and Control,Ministry of Natural Resources,Beijing 100193,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2022年第3期1-17,共17页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重点研发计划项目(2021YFE0102300) 国家自然科学基金项目(42001367)。
关键词 深度学习 土地利用 土地覆被 遥感分类 样本-模型-算法 deep learning land use land cover remote sensing classification sample-model-strategy
  • 相关文献

参考文献33

二级参考文献589

共引文献1330

同被引文献484

引证文献36

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部