期刊文献+

多距离聚类有效性指标研究 被引量:1

Research on Clustering Validity Index Based on Multiple Distances
下载PDF
导出
摘要 现有的聚类有效性指标大都是基于欧氏距离而设计.虽然对超球型数据效果较好,但对非超球型数据效果并不理想.基于此,提出一种基于多目标进化算法的多距离聚类有效性指标(MoMDVI).首先使用两种距离设计两个聚类目标,并使用类代表点代替类中心点;其次使用一组实数设计染色体,该组实数可解码成代表点序号的形式;然后使用基于正则化的分布估计算法(RMMEDA)对两个目标进行优化.在进化算子中,加入差分进化算子对RMMEDA算法进行改进,以提高算法的收敛速度.将MoMDVI与现有算法在不同结构的数据上对比可知,MoMDVI不仅可以自动检测超球型数据聚类数目,也可以自动检测非超球型数据聚类数目. Most of the existing clustering validity indices are usually based on Euclidean distance. Although,they can obtain satisfactory clustering results for hyper-spherical datasets,they do not behave well for irregular datasets. Based on this,this paper proposes a multiple distance validity index based on a multiobjective evolutionary algorithm( MoMDVI). Firstly,two clustering objectives are designed based on two distances respectively and the cluster center is replaced by cluster representative point. Secondly,the chromosome is designed by the indexes of the cluster representative points. Then,two objectives are optimized by distribution estimation algorithm based on the regularization( RMMEDA). In the designing of the evolutionary operator,we employ differential evolution to assist RMMEDA operator for increasing the convergence speed. Finally,MoMDVI is compared with several existing algorithms on test datasets with different structures and the experimental results show that MoMDVI not only can detect the cluster number on hyper-spherical datasets automatically,but also achieve good performance on irregular datasets.
作者 刘丛 陈倩倩 陈应霞 LIU Cong;CHEN Qian-qian;CHEN Ying-xia(School of Optical-electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Computer Science and Software Engineering,East China Normal University,Shanghai 200062,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第10期2209-2214,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61703278,61772342)资助
关键词 有效性指标 多距离聚类 多目标进化算法 聚类数目 validity index multiple distance clustering multiobjective evolutionary algorithm cluster number
  • 相关文献

参考文献4

二级参考文献37

  • 1肖宇,于剑.Gap statistic与K-means算法[J].计算机研究与发展,2007,44(z2):176-180. 被引量:7
  • 2Jain AK, Murty MN, Flynn PJ. Data clustering: A review. ACM Computing Surveys, 1999,31 (3):264-323. [doi: 10.1145/331499. 331504]. 被引量:1
  • 3Hartigan JA, Wong MA. A k-means clustering algorithm. Applied Statistics, 1979,28(1): 100-108. [doi: 10.2307/2346830]. 被引量:1
  • 4Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognition, 2000,33(9):1455-1465. [doi: 10.1016/S0031-3203(99)00137-5]. 被引量:1
  • 5Sheng WG, Swift S, Zhang LS, Liu XH. A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Trans. on System, Man Cybernetics-part B: Cybernetics, 2005,35(6): 1156-1167. [doi: 10.1109/TSMCB.2005.850173]. 被引量:1
  • 6Gong MG, Jiao LC, Wang L, Bo LF. Density-Sensitive evolutionary clustering. In: Proc. of the 11th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD 2007). Springer-Verlag, 2007. 507-514. [doi: 10.1007/978-3-540-71701-052]. 被引量:1
  • 7Sarafis IA, Trinder PW, Zalzala AMS. NOCEA: A rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases. Applied Soft Computation, 2007,7(3):668-710. [doi: 10.1016/j.asoc.2006.01.011]. 被引量:1
  • 8Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm. IEEE Trans. on System, Man Cybernetics-part A: System, Humans, 2008,38(1):218-237. [doi: 10.1109/TSMCA.2007.909595]. 被引量:1
  • 9Bandyopadhyay S, Saha S. A point symmetry-based clustering technique for automatic evolution of clusters. IEEE Trans. on Knowledge and Data Engineering, 2008,20(11): 1441-1457. [doi: 10.1109/TKDE.2008.79]. 被引量:1
  • 10Gong MG, Jiao LC, Bo LF, Wang L, Zhang XR. Image texture classification using a manifold distance based evolutionary clustering method. Optical Engineering, 2008,47(7):077201-1-077201-10. [doi: 10.1117/1.2955785]. 被引量:1

共引文献43

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部