期刊文献+

基于参数估计算法的异步电机定子电流故障诊断 被引量:4

Stator Current Fault Diagnosis for Asynchronous Motors Based on Parameter Estimation Algorithm
下载PDF
导出
摘要 参数估计算法是基于故障时电机特性参数变化来诊断异步电机故障的一种经济有效方法。首先研究了电机定子短路故障的数学模型,根据数学模型确定了代表电机故障的四个特征参数,并在Simulink参数估计工具箱中采用全局搜索算法成功估计这四个参数。最后,通过仿真结果验证了参数估计算法在噪声环境下基于低信噪比(S/N)的定子电流故障诊断可行性。 Parameter estimation algorithm is a cost-effective method for diagnosing failures of the asynchronous motor based on the change of characteristic parameters during a motor failure.Firstly,a mathematical model of motor stator short circuit fault was studied.According to the mathematical model,four characteristic parameters representing the motor fault were determined and successfully estimated according to the global search algorithm in the Simulink parameter estimation tool kit.Finally,simulation results verified the feasibility of the parameter estimation algorithm in its diagnosis of stator current fault based on low S/N ratio in a noisy environment.
作者 姜新通 刘钊铭 陈言 白宇 Jiang Xintong;Liu Zhaoming;Chen Yan;Bai Yu(College of Electrical Engineering and Information,Heilongjiang BayiAgricultural University,Daqing Heilongjiang 163319,China)
出处 《电气自动化》 2019年第5期10-12,48,共4页 Electrical Automation
基金 黑龙江八一农垦大学科研启动项目支持(项目编号XDB2013-17)
关键词 参数估计 电机故障诊断 特征参数 全局搜索算法 低信噪比 parameter estimation motor fault diagnosis characteristic parameter global search algorithm low S/N ratio
  • 相关文献

参考文献5

二级参考文献36

  • 1李开荣,陈宏建,陈崚.一种动态自适应蚁群算法[J].计算机工程与应用,2004,40(29):149-152. 被引量:20
  • 2钟一文,杨建刚.求解多任务调度问题的免疫蚁群算法[J].模式识别与人工智能,2006,19(1):73-78. 被引量:4
  • 3刘淳安,王宇平.约束多目标优化问题的进化算法及其收敛性[J].系统工程与电子技术,2007,29(2):277-280. 被引量:11
  • 4ISHIBUCHI H, YOSHIDA T, MURATA T. Balance between genetic search and local search in memetic algorithms for multi -objective permutation flowshop scheduliag [ J ]. IEEE Transactions on Evolutionary Computation, 2003, 7 (2) : 204 - 223. 被引量:1
  • 5ZITZLER E, DEB K, THIELE L. Comparison of multi-objective evolutionary algorithms: empirical results[ J ]. Evolutionary computation, 2000, 8 (2), 173 -195. 被引量:1
  • 6GOEL T, DEB K. Hybrid methods for multi - objective evolutionary algorithms [ C ]. WANG L P. Proc. of the 4th Asia - Pacific Conference on Simulated Evolu-tion and Learning. Singapore:Nanyang Technical University, 2002 : 188 - 192. 被引量:1
  • 7ISHIBUCHI H, MURATA T. Multi - objective genetic local search algorithm[ C]. Proc. of 3rd IEEE International Conference on Evolutionary Computation. Japan : Nagoya, 1996 : 119 - 124. 被引量:1
  • 8JASZKIEWICZ A.Genetic local search for multi-objective combinatorial optimization[J].Journal of Operational Research,2002,137(1):50-71. 被引量:1
  • 9ULUNGU E,TEGHEM J.MOSA method:a tool for solving multiobjective combinatorial optimization Problems[J].Journal of Multi-Criteria Decision Analysis,1999,8(4):221-236. 被引量:1
  • 10KNOWLES J, CORNED. M -PAES: a memetic algorithm for multi - objective optimization [ C ]. Proc.of 2000 Congress on Evolutionary Computation. New Jersey : Piscataway, 2000 : 325 - 332. 被引量:1

共引文献24

同被引文献22

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部