期刊文献+

基于小波包能量及高阶谱的特征提取方法 被引量:43

Feature Extraction Method Based on Wavelet Packet Energy and High-Order Spectrum
下载PDF
导出
摘要 针对广泛存在的油气管道周边安全问题,研究了管道周围地面活动目标产生的震动信号的特性,提出了一种基于小波包能量谱和信号高阶谱分析相结合的特征提取方法来区分不同的活动目标.根据目标产生的地面震动信号是非平稳的特点,采用基于小波包分解能量的方法对信号的各频带进行分解,得到信号在不同频带内的能量分布特性.仅根据能量谱并不能完全区分不同类型信号,通过对信号高阶统计特性的分析,提取出高阶谱特征频率,结合这两种方法提取出的特征作为神经网络的输入向量进行模式识别.通过对实验数据进行分析,单独采用小波包能量特征其平均识别率为88.5%,而采用本文提出的方法平均识别率可以提高到94.6%,验证了文中提出方法的有效性. In view of the prevalent peripheral security problems around oil and gas pipelines,characteristics of seismic signals generated by moving targets on the surrounding ground have been investigated and a feature extraction method based on wavelet packet energy distribution and high-order spectrum analysis has been put forward to distinguish the different targets. As the seismic signals generated by ground targets were not stable,wavelet packet energy method was used to decompose the signals at several independent frequency bands and to draw the energy distribution features in these bands. However,the wavelet packet energy distribution could not distinguish the types of signals very well. Therefore ,high-order statistic features of signals were analyzed and the characteristic frequencies were extracted. The features extracted based on wavelet packet energy distribution and high-order spectrum were input into the neural network as eigenvectors for pattern recognition. Experiment results indicate that the average recognition rate is 88.5% with only wavelet packet energy spectrum based method while it increases to 94.6% with the method proposed ,thus verifying its effectiveness.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2010年第6期562-566,共5页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金重点资助项目(60534050)
关键词 特征提取 小波包能量谱 高阶谱分析 地面震动信号 feature extraction wavelet packet energy spectrum high-order spectrum analysis seismic signal
  • 相关文献

参考文献10

二级参考文献35

  • 1周琰,靳世久,张昀超,孙立瑛.管道泄漏检测分布式光纤传感技术研究[J].光电子.激光,2005,16(8):935-938. 被引量:52
  • 2周晓凯,严普强.用小波分析铁路车辆滚动轴承诊断方法[J].清华大学学报(自然科学版),1996,36(8):29-33. 被引量:17
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.. 被引量:115
  • 4张子瑜 陈进 等.双谱分析在齿轮故障诊断中的应用[J].振动工程学报,1998,11:90-93. 被引量:1
  • 5唐秀家,第七届全国信号处理学会论文集,1995年 被引量:1
  • 6陈进.机械设备故障诊断与现代信号处理技术[J].振动工程学报,1998,11:6-10. 被引量:11
  • 7杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001.. 被引量:113
  • 8Mandal K, Atherton D L. A study of magnetic flux-leakage signals. Journal of Physics D (Applied Physics),31(22):3211~3217. 被引量:1
  • 9Rajtar J M, Muthiah R.Pipeline leak detection system for oil and gas flowlines. Journal of Manufacturing Science and Engineering, Transactions of the ASME,1997,119(1):105~109. 被引量:1
  • 10Grossmann A, Morlet J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration, 1985,(23):85~102. 被引量:1

共引文献269

同被引文献356

引证文献43

二级引证文献302

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部